This method is called when weak warning is produced by the parser. fmt
and args
is printf style.
This method is called when strong warning is produced by the parser. fmt
and args
is printf style.
Parses src
and create S-exp tree. Returns more readable tree rather than Ripper.sexp_raw
. This method is mainly for developer use.
require 'ripper' require 'pp' pp Ripper.sexp("def m(a) nil end") #=> [:program, [[:def, [:@ident, "m", [1, 4]], [:paren, [:params, [[:@ident, "a", [1, 6]]], nil, nil, nil, nil]], [:bodystmt, [[:var_ref, [:@kw, "nil", [1, 9]]]], nil, nil, nil]]]]
Return true if parsed source has errors.
If called without a block, this is the same as SDBM.new
.
If a block is given, the new database will be passed to the block and will be safely closed after the block has executed.
Example:
require 'sdbm' SDBM.open('my_database') do |db| db['hello'] = 'world' end
Returns true
if the database is closed.
Returns a new Array of key-value pairs for which the block returns true
.
Example:
require 'sdbm' SDBM.open 'my_database' do |db| db['apple'] = 'fruit' db['pear'] = 'fruit' db['spinach'] = 'vegetable' veggies = db.select do |key, value| value == 'vegetable' end #=> [["apple", "fruit"], ["pear", "fruit"]] end
Returns true
if the database is empty.
Deletes all data from the database.
Returns a Hash
in which the key-value pairs have been inverted.
Example:
require 'sdbm' SDBM.open 'my_database' do |db| db.update('apple' => 'fruit', 'spinach' => 'vegetable') db.invert #=> {"fruit" => "apple", "vegetable" => "spinach"} end
Returns true
if the database contains the given key
.
enable the socket option IPV6_V6ONLY
if IPV6_V6ONLY
is available.
Requests a connection to be made on the given remote_sockaddr
. Returns 0 if successful, otherwise an exception is raised.
remote_sockaddr
- the struct
sockaddr contained in a string or Addrinfo
object
# Pull down Google's web page require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 80, 'www.google.com' ) socket.connect( sockaddr ) socket.write( "GET / HTTP/1.0\r\n\r\n" ) results = socket.read
On unix-based systems the following system exceptions may be raised if the call to connect fails:
Errno::EACCES - search permission is denied for a component of the prefix path or write access to the socket
is denied
Errno::EADDRINUSE - the sockaddr is already in use
Errno::EADDRNOTAVAIL - the specified sockaddr is not available from the local machine
Errno::EAFNOSUPPORT - the specified sockaddr is not a valid address for the address family of the specified socket
Errno::EALREADY - a connection is already in progress for the specified socket
Errno::EBADF - the socket
is not a valid file descriptor
Errno::ECONNREFUSED - the target sockaddr was not listening for connections refused the connection request
Errno::ECONNRESET
- the remote host reset the connection request
Errno::EFAULT - the sockaddr cannot be accessed
Errno::EHOSTUNREACH - the destination host cannot be reached (probably because the host is down or a remote router cannot reach it)
Errno::EINPROGRESS - the O_NONBLOCK is set for the socket
and the connection cannot be immediately established; the connection will be established asynchronously
Errno::EINTR - the attempt to establish the connection was interrupted by delivery of a signal that was caught; the connection will be established asynchronously
Errno::EISCONN - the specified socket
is already connected
Errno::EINVAL - the address length used for the sockaddr is not a valid length for the address family or there is an invalid family in sockaddr
Errno::ENAMETOOLONG - the pathname resolved had a length which exceeded PATH_MAX
Errno::ENETDOWN - the local interface used to reach the destination is down
Errno::ENETUNREACH - no route to the network is present
Errno::ENOBUFS - no buffer space is available
Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation
Errno::ENOTSOCK - the socket
argument does not refer to a socket
Errno::EOPNOTSUPP - the calling socket
is listening and cannot be connected
Errno::EPROTOTYPE - the sockaddr has a different type than the socket bound to the specified peer address
Errno::ETIMEDOUT - the attempt to connect time out before a connection was made.
On unix-based systems if the address family of the calling socket
is AF_UNIX
the follow exceptions may be raised if the call to connect fails:
Errno::EIO - an i/o error occurred while reading from or writing to the file system
Errno::ELOOP - too many symbolic links were encountered in translating the pathname in sockaddr
Errno::ENAMETOOLLONG - a component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters
Errno::ENOENT - a component of the pathname does not name an existing file or the pathname is an empty string
Errno::ENOTDIR - a component of the path prefix of the pathname in sockaddr is not a directory
On Windows systems the following system exceptions may be raised if the call to connect fails:
Errno::ENETDOWN - the network is down
Errno::EADDRINUSE - the socket’s local address is already in use
Errno::EINTR - the socket was cancelled
Errno::EINPROGRESS - a blocking socket is in progress or the service provider is still processing a callback function. Or a nonblocking connect call is in progress on the socket
.
Errno::EALREADY - see Errno::EINVAL
Errno::EADDRNOTAVAIL - the remote address is not a valid address, such as ADDR_ANY TODO check ADDRANY TO INADDR_ANY
Errno::EAFNOSUPPORT - addresses in the specified family cannot be used with with this socket
Errno::ECONNREFUSED - the target sockaddr was not listening for connections refused the connection request
Errno::EFAULT - the socket’s internal address or address length parameter is too small or is not a valid part of the user space address
Errno::EINVAL - the socket
is a listening socket
Errno::EISCONN - the socket
is already connected
Errno::ENETUNREACH - the network cannot be reached from this host at this time
Errno::EHOSTUNREACH - no route to the network is present
Errno::ENOBUFS - no buffer space is available
Errno::ENOTSOCK - the socket
argument does not refer to a socket
Errno::ETIMEDOUT - the attempt to connect time out before a connection was made.
Errno::EWOULDBLOCK - the socket is marked as nonblocking and the connection cannot be completed immediately
Errno::EACCES - the attempt to connect the datagram socket to the broadcast address failed
connect manual pages on unix-based systems
connect function in Microsoft’s Winsock functions reference
Accepts a next connection. Returns a new Socket
object and Addrinfo
object.
serv = Socket.new(:INET, :STREAM, 0) serv.listen(5) c = Socket.new(:INET, :STREAM, 0) c.connect(serv.connect_address) p serv.accept #=> [#<Socket:fd 6>, #<Addrinfo: 127.0.0.1:48555 TCP>]
Accepts an incoming connection returning an array containing the (integer) file descriptor for the incoming connection, client_socket_fd, and an Addrinfo
, client_addrinfo.
# In one script, start this first require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.bind( sockaddr ) socket.listen( 5 ) client_fd, client_addrinfo = socket.sysaccept client_socket = Socket.for_fd( client_fd ) puts "The client said, '#{client_socket.readline.chomp}'" client_socket.puts "Hello from script one!" socket.close # In another script, start this second require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.connect( sockaddr ) socket.puts "Hello from script 2." puts "The server said, '#{socket.readline.chomp}'" socket.close
Refer to Socket#accept
for the exceptions that may be thrown if the call to sysaccept fails.
Creates a pair of sockets connected each other.
domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol should be a protocol defined in the domain, defaults to 0 for the domain.
s1, s2 = Socket.pair(:UNIX, :STREAM, 0) s1.send "a", 0 s1.send "b", 0 s1.close p s2.recv(10) #=> "ab" p s2.recv(10) #=> "" p s2.recv(10) #=> "" s1, s2 = Socket.pair(:UNIX, :DGRAM, 0) s1.send "a", 0 s1.send "b", 0 p s2.recv(10) #=> "a" p s2.recv(10) #=> "b"
Creates a pair of sockets connected each other.
domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol should be a protocol defined in the domain, defaults to 0 for the domain.
s1, s2 = Socket.pair(:UNIX, :STREAM, 0) s1.send "a", 0 s1.send "b", 0 s1.close p s2.recv(10) #=> "ab" p s2.recv(10) #=> "" p s2.recv(10) #=> "" s1, s2 = Socket.pair(:UNIX, :DGRAM, 0) s1.send "a", 0 s1.send "b", 0 p s2.recv(10) #=> "a" p s2.recv(10) #=> "b"
Returns the remote address of the socket as a sockaddr string.
TCPServer.open("127.0.0.1", 1440) {|serv| c = TCPSocket.new("127.0.0.1", 1440) s = serv.accept p s.getpeername #=> "\x02\x00\x82u\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00" }
If Addrinfo
object is preferred over the binary string, use BasicSocket#remote_address
.
Returns the user and group on the peer of the UNIX socket. The result is a two element array which contains the effective uid and the effective gid.
Socket.unix_server_loop("/tmp/sock") {|s| begin euid, egid = s.getpeereid # Check the connected client is myself or not. next if euid != Process.uid # do something about my resource. ensure s.close end }
send mesg via basicsocket.
mesg should be a string.
flags should be a bitwise OR of Socket::MSG_* constants.
dest_sockaddr should be a packed sockaddr string or an addrinfo.
TCPSocket.open("localhost", 80) {|s| s.send "GET / HTTP/1.0\r\n\r\n", 0 p s.read }
sendmsg sends a message using sendmsg(2) system call in blocking manner.
mesg is a string to send.
flags is bitwise OR of MSG_* constants such as Socket::MSG_OOB.
dest_sockaddr is a destination socket address for connection-less socket. It should be a sockaddr such as a result of Socket.sockaddr_in
. An Addrinfo
object can be used too.
controls is a list of ancillary data. The element of controls should be Socket::AncillaryData
or 3-elements array. The 3-element array should contains cmsg_level, cmsg_type and data.
The return value, numbytes_sent is an integer which is the number of bytes sent.
sendmsg can be used to implement send_io as follows:
# use Socket::AncillaryData. ancdata = Socket::AncillaryData.int(:UNIX, :SOCKET, :RIGHTS, io.fileno) sock.sendmsg("a", 0, nil, ancdata) # use 3-element array. ancdata = [:SOCKET, :RIGHTS, [io.fileno].pack("i!")] sock.sendmsg("\0", 0, nil, ancdata)
Returns the remote address as an array which contains address_family, port, hostname and numeric_address. It is defined for connection oriented socket such as TCPSocket
.
If reverse_lookup
is true
or :hostname
, hostname is obtained from numeric_address using reverse lookup. Or if it is false
, or :numeric
, hostname is same as numeric_address. Or if it is nil
or omitted, obeys to ipsocket.do_not_reverse_lookup
. See Socket.getaddrinfo
also.
TCPSocket.open("www.ruby-lang.org", 80) {|sock| p sock.peeraddr #=> ["AF_INET", 80, "carbon.ruby-lang.org", "221.186.184.68"] p sock.peeraddr(true) #=> ["AF_INET", 80, "carbon.ruby-lang.org", "221.186.184.68"] p sock.peeraddr(false) #=> ["AF_INET", 80, "221.186.184.68", "221.186.184.68"] p sock.peeraddr(:hostname) #=> ["AF_INET", 80, "carbon.ruby-lang.org", "221.186.184.68"] p sock.peeraddr(:numeric) #=> ["AF_INET", 80, "221.186.184.68", "221.186.184.68"] }
creates a socket connected to the address of self.
The optional argument opts is options represented by a hash. opts may have following options:
specify the timeout in seconds.
If a block is given, it is called with the socket and the value of the block is returned. The socket is returned otherwise.
Addrinfo.tcp("www.ruby-lang.org", 80).connect {|s| s.print "GET / HTTP/1.0\r\nHost: www.ruby-lang.org\r\n\r\n" puts s.read }