Results for: "String# "

RingFinger is used by RingServer clients to discover the RingServer’s TupleSpace. Typically, all a client needs to do is call RingFinger.primary to retrieve the remote TupleSpace, which it can then begin using.

To find the first available remote TupleSpace:

Rinda::RingFinger.primary

To create a RingFinger that broadcasts to a custom list:

rf = Rinda::RingFinger.new  ['localhost', '192.0.2.1']
rf.primary

Rinda::RingFinger also understands multicast addresses and sets them up properly. This allows you to run multiple RingServers on the same host:

rf = Rinda::RingFinger.new ['239.0.0.1']
rf.primary

You can set the hop count (or TTL) for multicast searches using multicast_hops.

If you use IPv6 multicast you may need to set both an address and the outbound interface index:

rf = Rinda::RingFinger.new ['ff02::1']
rf.multicast_interface = 1
rf.primary

At this time there is no easy way to get an interface index by name.

No documentation available

WIN32OLE_VARIABLE objects represent OLE variable information.

WIN32OLE_VARIANT objects represents OLE variant.

Win32OLE converts Ruby object into OLE variant automatically when invoking OLE methods. If OLE method requires the argument which is different from the variant by automatic conversion of Win32OLE, you can convert the specfied variant type by using WIN32OLE_VARIANT class.

param = WIN32OLE_VARIANT.new(10, WIN32OLE::VARIANT::VT_R4)
oleobj.method(param)

WIN32OLE_VARIANT does not support VT_RECORD variant. Use WIN32OLE_RECORD class instead of WIN32OLE_VARIANT if the VT_RECORD variant is needed.

No documentation available

Certain attributes are required on specific tags in an RSS feed. If a feed is missing one of these attributes, a MissingAttributeError is raised.

No documentation available

This exception is raised if the nesting of parsed data structures is too deep.

The InstructionSequence class represents a compiled sequence of instructions for the Ruby Virtual Machine.

With it, you can get a handle to the instructions that make up a method or a proc, compile strings of Ruby code down to VM instructions, and disassemble instruction sequences to strings for easy inspection. It is mostly useful if you want to learn how the Ruby VM works, but it also lets you control various settings for the Ruby iseq compiler.

You can find the source for the VM instructions in insns.def in the Ruby source.

The instruction sequence results will almost certainly change as Ruby changes, so example output in this documentation may be different from what you see.

Exception raised when there is an invalid encoding detected

PrettyPrint::SingleLine is used by PrettyPrint.singleline_format

It is passed to be similar to a PrettyPrint object itself, by responding to:

but instead, the output has no line breaks

An implementation of PseudoPrimeGenerator which uses a prime table generated by trial division.

Represents an XML Instruction; IE, <? … ?> TODO: Add parent arg (3rd arg) to constructor

A RingServer allows a Rinda::TupleSpace to be located via UDP broadcasts. Default service location uses the following steps:

  1. A RingServer begins listening on the network broadcast UDP address.

  2. A RingFinger sends a UDP packet containing the DRb URI where it will listen for a reply.

  3. The RingServer receives the UDP packet and connects back to the provided DRb URI with the DRb service.

A RingServer requires a TupleSpace:

ts = Rinda::TupleSpace.new
rs = Rinda::RingServer.new

RingServer can also listen on multicast addresses for announcements. This allows multiple RingServers to run on the same host. To use network broadcast and multicast:

ts = Rinda::TupleSpace.new
rs = Rinda::RingServer.new ts, %w[Socket::INADDR_ANY, 239.0.0.1 ff02::1]

RingProvider uses a RingServer advertised TupleSpace as a name service. TupleSpace clients can register themselves with the remote TupleSpace and look up other provided services via the remote TupleSpace.

Services are registered with a tuple of the format [:name, klass, DRbObject, description].

A test case for Gem::Installer.

OpenSSL IO buffering mix-in module.

This module allows an OpenSSL::SSL::SSLSocket to behave like an IO.

You typically won’t use this module directly, you can see it implemented in OpenSSL::SSL::SSLSocket.

A template for stream parser listeners. Note that the declarations (attlistdecl, elementdecl, etc) are trivially processed; REXML doesn’t yet handle doctype entity declarations, so you have to parse them out yourself.

C struct shell

A C struct wrapper

No documentation available

This exception is raised if the required unicode support is missing on the system. Usually this means that the iconv library is not installed.

This class is the access to openssl’s ENGINE cryptographic module implementation.

See also, www.openssl.org/docs/crypto/engine.html

Psych::Stream is a streaming YAML emitter. It will not buffer your YAML, but send it straight to an IO.

Here is an example use:

stream = Psych::Stream.new($stdout)
stream.start
stream.push({:foo => 'bar'})
stream.finish

YAML will be immediately emitted to $stdout with no buffering.

Psych::Stream#start will take a block and ensure that Psych::Stream#finish is called, so you can do this form:

stream = Psych::Stream.new($stdout)
stream.start do |em|
  em.push(:foo => 'bar')
end

Subclass of Zlib::Error

When zlib returns a Z_STREAM_END is return if the end of the compressed data has been reached and all uncompressed out put has been produced.

Search took: 3ms  ·  Total Results: 2902