Results for: "partition"

Return the path as a String.

to_path is implemented so Pathname objects are usable with File.open, etc.

See FileTest.world_writable?.

See FileTest.writable_real?.

Iterates over each key-value pair in the database.

If no block is given, returns an Enumerator.

Receives up to maxlen bytes from socket using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_ options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.

When recvfrom(2) returns 0, Socket#recvfrom_nonblock returns an empty string as data. The meaning depends on the socket: EOF on TCP, empty packet on UDP, etc.

Parameters

Example

# In one file, start this first
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.bind(sockaddr)
socket.listen(5)
client, client_addrinfo = socket.accept
begin # emulate blocking recvfrom
  pair = client.recvfrom_nonblock(20)
rescue IO::WaitReadable
  IO.select([client])
  retry
end
data = pair[0].chomp
puts "I only received 20 bytes '#{data}'"
sleep 1
socket.close

# In another file, start this second
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.connect(sockaddr)
socket.puts "Watch this get cut short!"
socket.close

Refer to Socket#recvfrom for the exceptions that may be thrown if the call to recvfrom_nonblock fails.

Socket#recvfrom_nonblock may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying recvfrom_nonblock.

By specifying a keyword argument exception to false, you can indicate that recvfrom_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

See

Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an array containing the accepted socket for the incoming connection, client_socket, and an Addrinfo, client_addrinfo.

Example

# In one script, start this first
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.bind(sockaddr)
socket.listen(5)
begin # emulate blocking accept
  client_socket, client_addrinfo = socket.accept_nonblock
rescue IO::WaitReadable, Errno::EINTR
  IO.select([socket])
  retry
end
puts "The client said, '#{client_socket.readline.chomp}'"
client_socket.puts "Hello from script one!"
socket.close

# In another script, start this second
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.connect(sockaddr)
socket.puts "Hello from script 2."
puts "The server said, '#{socket.readline.chomp}'"
socket.close

Refer to Socket#accept for the exceptions that may be thrown if the call to accept_nonblock fails.

Socket#accept_nonblock may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED or Errno::EPROTO, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying accept_nonblock.

By specifying a keyword argument exception to false, you can indicate that accept_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

See

Disallows further write using shutdown system call.

UNIXSocket.pair {|s1, s2|
  s1.print "ping"
  s1.close_write
  p s2.read        #=> "ping"
  s2.print "pong"
  s2.close
  p s1.read        #=> "pong"
}

Returns an address of the socket suitable for connect in the local machine.

This method returns self.local_address, except following condition.

If the local address is not suitable for connect, SocketError is raised. IPv4 and IPv6 address which port is 0 is not suitable for connect. Unix domain socket which has no path is not suitable for connect.

Addrinfo.tcp("0.0.0.0", 0).listen {|serv|
  p serv.connect_address #=> #<Addrinfo: 127.0.0.1:53660 TCP>
  serv.connect_address.connect {|c|
    s, _ = serv.accept
    p [c, s] #=> [#<Socket:fd 4>, #<Socket:fd 6>]
  }
}

sendmsg_nonblock sends a message using sendmsg(2) system call in non-blocking manner.

It is similar to BasicSocket#sendmsg but the non-blocking flag is set before the system call and it doesn’t retry the system call.

By specifying a keyword argument exception to false, you can indicate that sendmsg_nonblock should not raise an IO::WaitWritable exception, but return the symbol :wait_writable instead.

Receives up to maxlen bytes from socket using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_ options. The result, mesg, is the data received.

When recvfrom(2) returns 0, Socket#recv_nonblock returns an empty string as data. The meaning depends on the socket: EOF on TCP, empty packet on UDP, etc.

Parameters

Example

serv = TCPServer.new("127.0.0.1", 0)
af, port, host, addr = serv.addr
c = TCPSocket.new(addr, port)
s = serv.accept
c.send "aaa", 0
begin # emulate blocking recv.
  p s.recv_nonblock(10) #=> "aaa"
rescue IO::WaitReadable
  IO.select([s])
  retry
end

Refer to Socket#recvfrom for the exceptions that may be thrown if the call to recv_nonblock fails.

BasicSocket#recv_nonblock may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying recv_nonblock.

By specifying a keyword argument exception to false, you can indicate that recv_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

See

recvmsg receives a message using recvmsg(2) system call in non-blocking manner.

It is similar to BasicSocket#recvmsg but non-blocking flag is set before the system call and it doesn’t retry the system call.

By specifying a keyword argument exception to false, you can indicate that recvmsg_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

creates a new Socket connected to the address of local_addrinfo.

If local_addrinfo is nil, the address of the socket is not bound.

The timeout specify the seconds for timeout. Errno::ETIMEDOUT is raised when timeout occur.

If a block is given the created socket is yielded for each address.

creates a socket connected to the address of self.

If one or more arguments given as local_addr_args, it is used as the local address of the socket. local_addr_args is given for family_addrinfo to obtain actual address.

If local_addr_args is not given, the local address of the socket is not bound.

The optional last argument opts is options represented by a hash. opts may have following options:

:timeout

specify the timeout in seconds.

If a block is given, it is called with the socket and the value of the block is returned. The socket is returned otherwise.

Addrinfo.tcp("www.ruby-lang.org", 80).connect_from("0.0.0.0", 4649) {|s|
  s.print "GET / HTTP/1.0\r\nHost: www.ruby-lang.org\r\n\r\n"
  puts s.read
}

# Addrinfo object can be taken for the argument.
Addrinfo.tcp("www.ruby-lang.org", 80).connect_from(Addrinfo.tcp("0.0.0.0", 4649)) {|s|
  s.print "GET / HTTP/1.0\r\nHost: www.ruby-lang.org\r\n\r\n"
  puts s.read
}

creates a socket connected to remote_addr_args and bound to self.

The optional last argument opts is options represented by a hash. opts may have following options:

:timeout

specify the timeout in seconds.

If a block is given, it is called with the socket and the value of the block is returned. The socket is returned otherwise.

Addrinfo.tcp("0.0.0.0", 4649).connect_to("www.ruby-lang.org", 80) {|s|
  s.print "GET / HTTP/1.0\r\nHost: www.ruby-lang.org\r\n\r\n"
  puts s.read
}

Returns the IP address and port number as 2-element array.

Addrinfo.tcp("127.0.0.1", 80).ip_unpack    #=> ["127.0.0.1", 80]
Addrinfo.tcp("::1", 80).ip_unpack          #=> ["::1", 80]

Returns the port number as an integer.

Addrinfo.tcp("127.0.0.1", 80).ip_port    #=> 80
Addrinfo.tcp("::1", 80).ip_port          #=> 80

Returns true for IPv6 site local address (ffc0::/10). It returns false otherwise.

Returns true for IPv4-compatible IPv6 address (::/80). It returns false otherwise.

Returns the socket path as a string.

Addrinfo.unix("/tmp/sock").unix_path       #=> "/tmp/sock"

Receives up to maxlen bytes from udpsocket using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_ options. The first element of the results, mesg, is the data received. The second element, sender_inet_addr, is an array to represent the sender address.

When recvfrom(2) returns 0, Socket#recvfrom_nonblock returns an empty string as data. It means an empty packet.

Parameters

Example

require 'socket'
s1 = UDPSocket.new
s1.bind("127.0.0.1", 0)
s2 = UDPSocket.new
s2.bind("127.0.0.1", 0)
s2.connect(*s1.addr.values_at(3,1))
s1.connect(*s2.addr.values_at(3,1))
s1.send "aaa", 0
begin # emulate blocking recvfrom
  p s2.recvfrom_nonblock(10)  #=> ["aaa", ["AF_INET", 33302, "localhost.localdomain", "127.0.0.1"]]
rescue IO::WaitReadable
  IO.select([s2])
  retry
end

Refer to Socket#recvfrom for the exceptions that may be thrown if the call to recvfrom_nonblock fails.

UDPSocket#recvfrom_nonblock may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying recvfrom_nonblock.

By specifying a keyword argument exception to false, you can indicate that recvfrom_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

See

Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an accepted TCPSocket for the incoming connection.

Example

require 'socket'
serv = TCPServer.new(2202)
begin # emulate blocking accept
  sock = serv.accept_nonblock
rescue IO::WaitReadable, Errno::EINTR
  IO.select([serv])
  retry
end
# sock is an accepted socket.

Refer to Socket#accept for the exceptions that may be thrown if the call to TCPServer#accept_nonblock fails.

TCPServer#accept_nonblock may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED, Errno::EPROTO, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying accept_nonblock.

By specifying a keyword argument exception to false, you can indicate that accept_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

See

Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an accepted UNIXSocket for the incoming connection.

Example

require 'socket'
serv = UNIXServer.new("/tmp/sock")
begin # emulate blocking accept
  sock = serv.accept_nonblock
rescue IO::WaitReadable, Errno::EINTR
  IO.select([serv])
  retry
end
# sock is an accepted socket.

Refer to Socket#accept for the exceptions that may be thrown if the call to UNIXServer#accept_nonblock fails.

UNIXServer#accept_nonblock may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED or Errno::EPROTO, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying accept_nonblock.

By specifying a keyword argument exception to false, you can indicate that accept_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

See

Sends io as file descriptor passing.

s1, s2 = UNIXSocket.pair

s1.send_io STDOUT
stdout = s2.recv_io

p STDOUT.fileno #=> 1
p stdout.fileno #=> 6

stdout.puts "hello" # outputs "hello\n" to standard output.

io may be any kind of IO object or integer file descriptor.

Example

UNIXServer.open("/tmp/sock") {|serv|
  UNIXSocket.open("/tmp/sock") {|c|
    s = serv.accept

    c.send_io STDOUT
    stdout = s.recv_io

    p STDOUT.fileno #=> 1
    p stdout.fileno #=> 7

    stdout.puts "hello" # outputs "hello\n" to standard output.
  }
}

klass will determine the class of io returned (using the IO.for_fd singleton method or similar). If klass is nil, an integer file descriptor is returned.

mode is the same as the argument passed to IO.for_fd

Closes the write end of a StringIO. Will raise an IOError if the strio is not writeable.

Search took: 6ms  ·  Total Results: 2971