Stores class name (OpenStruct
) with this struct’s values v
as a JSON
string.
Stores class name (Range
) with JSON
array of arguments a
which include first
(integer), last
(integer), and exclude_end?
(boolean) as JSON
string.
Deserializes JSON
string by constructing new Regexp
object with source s
(Regexp
or String) and options o
serialized by to_json
The first form returns the MatchData
object generated by the last successful pattern match. Equivalent to reading the special global variable $~
(see Special global variables in Regexp
for details).
The second form returns the nth field in this MatchData
object. n can be a string or symbol to reference a named capture.
Note that the last_match
is local to the thread and method scope of the method that did the pattern match.
/c(.)t/ =~ 'cat' #=> 0 Regexp.last_match #=> #<MatchData "cat" 1:"a"> Regexp.last_match(0) #=> "cat" Regexp.last_match(1) #=> "a" Regexp.last_match(2) #=> nil /(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ "var = val" Regexp.last_match #=> #<MatchData "var = val" lhs:"var" rhs:"val"> Regexp.last_match(:lhs) #=> "var" Regexp.last_match(:rhs) #=> "val"
Returns a hash representing information about named captures of rxp.
A key of the hash is a name of the named captures. A value of the hash is an array which is list of indexes of corresponding named captures.
/(?<foo>.)(?<bar>.)/.named_captures #=> {"foo"=>[1], "bar"=>[2]} /(?<foo>.)(?<foo>.)/.named_captures #=> {"foo"=>[1, 2]}
If there are no named captures, an empty hash is returned.
/(.)(.)/.named_captures #=> {}
In general, to_sym
returns the Symbol
corresponding to an object. As sym is already a symbol, self
is returned in this case.
Returns a Proc object which respond to the given method by sym.
(1..3).collect(&:to_s) #=> ["1", "2", "3"]
Returns true if this class can be used to create an instance from a serialised JSON
string. The class has to implement a class method json_create that expects a hash as first parameter. The hash should include the required data.
Return the path as a String.
to_path
is implemented so Pathname
objects are usable with File.open
, etc.
This method is called when the parser found syntax error.
Returns a new Hash
containing each key-value pair in the database.
Receives up to maxlen bytes from socket
using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_
options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.
When recvfrom(2) returns 0, Socket#recvfrom_nonblock
returns an empty string as data. The meaning depends on the socket: EOF on TCP, empty packet on UDP, etc.
maxlen
- the maximum number of bytes to receive from the socket
flags
- zero or more of the MSG_
options
outbuf
- destination String buffer
opts
- keyword hash, supporting ‘exception: false`
# In one file, start this first require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, 'localhost') socket.bind(sockaddr) socket.listen(5) client, client_addrinfo = socket.accept begin # emulate blocking recvfrom pair = client.recvfrom_nonblock(20) rescue IO::WaitReadable IO.select([client]) retry end data = pair[0].chomp puts "I only received 20 bytes '#{data}'" sleep 1 socket.close # In another file, start this second require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, 'localhost') socket.connect(sockaddr) socket.puts "Watch this get cut short!" socket.close
Refer to Socket#recvfrom
for the exceptions that may be thrown if the call to recvfrom_nonblock fails.
Socket#recvfrom_nonblock
may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitReadable
. So IO::WaitReadable
can be used to rescue the exceptions for retrying recvfrom_nonblock.
By specifying a keyword argument exception to false
, you can indicate that recvfrom_nonblock
should not raise an IO::WaitReadable
exception, but return the symbol :wait_readable
instead.
Returns a socket object which contains the file descriptor, fd.
# If invoked by inetd, STDIN/STDOUT/STDERR is a socket. STDIN_SOCK = Socket.for_fd(STDIN.fileno) p STDIN_SOCK.remote_address
Disallows further read using shutdown system call.
s1, s2 = UNIXSocket.pair s1.close_read s2.puts #=> Broken pipe (Errno::EPIPE)
Returns an Addrinfo
object for local address obtained by getsockname.
Note that addrinfo.protocol is filled by 0.
TCPSocket.open("www.ruby-lang.org", 80) {|s| p s.local_address #=> #<Addrinfo: 192.168.0.129:36873 TCP> } TCPServer.open("127.0.0.1", 1512) {|serv| p serv.local_address #=> #<Addrinfo: 127.0.0.1:1512 TCP> }
Returns an address of the socket suitable for connect in the local machine.
This method returns self.local_address, except following condition.
IPv4 unspecified address (0.0.0.0) is replaced by IPv4 loopback address (127.0.0.1).
IPv6 unspecified address (::) is replaced by IPv6 loopback address (::1).
If the local address is not suitable for connect, SocketError
is raised. IPv4 and IPv6 address which port is 0 is not suitable for connect. Unix domain socket which has no path is not suitable for connect.
Addrinfo.tcp("0.0.0.0", 0).listen {|serv| p serv.connect_address #=> #<Addrinfo: 127.0.0.1:53660 TCP> serv.connect_address.connect {|c| s, _ = serv.accept p [c, s] #=> [#<Socket:fd 4>, #<Socket:fd 6>] } }