Unlinks (deletes) the file from the filesystem. One should always unlink the file after using it, as is explained in the “Explicit close” good practice section in the Tempfile
overview:
file = Tempfile.new('foo') begin ...do something with file... ensure file.close file.unlink # deletes the temp file end
On POSIX systems it’s possible to unlink a file before closing it. This practice is explained in detail in the Tempfile
overview (section “Unlink after creation”); please refer there for more information.
However, unlink-before-close may not be supported on non-POSIX operating systems. Microsoft Windows is the most notable case: unlinking a non-closed file will result in an error, which this method will silently ignore. If you want to practice unlink-before-close whenever possible, then you should write code like this:
file = Tempfile.new('foo') file.unlink # On Windows this silently fails. begin ... do something with file ... ensure file.close! # Closes the file handle. If the file wasn't unlinked # because #unlink failed, then this method will attempt # to do so again. end
Returns true
if any thread has terminated and is ready to be collected.
Waits for specified threads to terminate, and returns when one of the threads terminated.
Returns true
if any thread has terminated and is ready to be collected.
Waits for specified threads to terminate, and returns when one of the threads terminated.
The string representation of true
is “true”.
The string representation of false
is “false”.
Basically the same as ::new
. However, if class Thread
is subclassed, then calling start
in that subclass will not invoke the subclass’s initialize
method.
Returns the main thread.
Stops execution of the current thread, putting it into a “sleep” state, and schedules execution of another thread.
a = Thread.new { print "a"; Thread.stop; print "c" } sleep 0.1 while a.status!='sleep' print "b" a.run a.join #=> "abc"
Returns an array of Thread
objects for all threads that are either runnable or stopped.
Thread.new { sleep(200) } Thread.new { 1000000.times {|i| i*i } } Thread.new { Thread.stop } Thread.list.each {|t| p t}
This will produce:
#<Thread:0x401b3e84 sleep> #<Thread:0x401b3f38 run> #<Thread:0x401b3fb0 sleep> #<Thread:0x401bdf4c run>
The calling thread will suspend execution and run this thr
.
Does not return until thr
exits or until the given limit
seconds have passed.
If the time limit expires, nil
will be returned, otherwise thr
is returned.
Any threads not joined will be killed when the main program exits.
If thr
had previously raised an exception and the ::abort_on_exception
or $DEBUG flags are not set, (so the exception has not yet been processed), it will be processed at this time.
a = Thread.new { print "a"; sleep(10); print "b"; print "c" } x = Thread.new { print "x"; Thread.pass; print "y"; print "z" } x.join # Let thread x finish, thread a will be killed on exit. #=> "axyz"
The following example illustrates the limit
parameter.
y = Thread.new { 4.times { sleep 0.1; puts 'tick... ' }} puts "Waiting" until y.join(0.15)
This will produce:
tick... Waiting tick... Waiting tick... tick...
Terminates thr
and schedules another thread to be run.
If this thread is already marked to be killed, exit
returns the Thread
.
If this is the main thread, or the last thread, exits the process.
Returns the status of thr
.
"sleep"
Returned if this thread is sleeping or waiting on I/O
"run"
When this thread is executing
"aborting"
If this thread is aborting
false
When this thread is terminated normally
nil
If terminated with an exception.
a = Thread.new { raise("die now") } b = Thread.new { Thread.stop } c = Thread.new { Thread.exit } d = Thread.new { sleep } d.kill #=> #<Thread:0x401b3678 aborting> a.status #=> nil b.status #=> "sleep" c.status #=> false d.status #=> "aborting" Thread.current.status #=> "run"
Returns true
if thr
is dead or sleeping.
a = Thread.new { Thread.stop } b = Thread.current a.stop? #=> true b.stop? #=> false
Returns the current backtrace of the target thread.
Dump the name, id, and status of thr to a string.
Returns the number of mandatory arguments. If the block is declared to take no arguments, returns 0. If the block is known to take exactly n arguments, returns n. If the block has optional arguments, returns -n-1, where n is the number of mandatory arguments, with the exception for blocks that are not lambdas and have only a finite number of optional arguments; in this latter case, returns n. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. A proc
with no argument declarations is the same as a block declaring ||
as its arguments.
proc {}.arity #=> 0 proc { || }.arity #=> 0 proc { |a| }.arity #=> 1 proc { |a, b| }.arity #=> 2 proc { |a, b, c| }.arity #=> 3 proc { |*a| }.arity #=> -1 proc { |a, *b| }.arity #=> -2 proc { |a, *b, c| }.arity #=> -3 proc { |x:, y:, z:0| }.arity #=> 1 proc { |*a, x:, y:0| }.arity #=> -2 proc { |a=0| }.arity #=> 0 lambda { |a=0| }.arity #=> -1 proc { |a=0, b| }.arity #=> 1 lambda { |a=0, b| }.arity #=> -2 proc { |a=0, b=0| }.arity #=> 0 lambda { |a=0, b=0| }.arity #=> -1 proc { |a, b=0| }.arity #=> 1 lambda { |a, b=0| }.arity #=> -2 proc { |(a, b), c=0| }.arity #=> 1 lambda { |(a, b), c=0| }.arity #=> -2 proc { |a, x:0, y:0| }.arity #=> 1 lambda { |a, x:0, y:0| }.arity #=> -2
Returns the unique identifier for this proc, along with an indication of where the proc was defined.
Returns an indication of the number of arguments accepted by a method. Returns a nonnegative integer for methods that take a fixed number of arguments. For Ruby methods that take a variable number of arguments, returns -n-1, where n is the number of required arguments. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. For methods written in C, returns -1 if the call takes a variable number of arguments.
class C def one; end def two(a); end def three(*a); end def four(a, b); end def five(a, b, *c); end def six(a, b, *c, &d); end def seven(a, b, x:0); end def eight(x:, y:); end def nine(x:, y:, **z); end def ten(*a, x:, y:); end end c = C.new c.method(:one).arity #=> 0 c.method(:two).arity #=> 1 c.method(:three).arity #=> -1 c.method(:four).arity #=> 2 c.method(:five).arity #=> -3 c.method(:six).arity #=> -3 c.method(:seven).arity #=> -3 c.method(:eight).arity #=> 1 c.method(:nine).arity #=> 1 c.method(:ten).arity #=> -2 "cat".method(:size).arity #=> 0 "cat".method(:replace).arity #=> 1 "cat".method(:squeeze).arity #=> -1 "cat".method(:count).arity #=> -1
Returns the name of the underlying method.
"cat".method(:count).inspect #=> "#<Method: String#count>"
Dissociates meth from its current receiver. The resulting UnboundMethod
can subsequently be bound to a new object of the same class (see UnboundMethod
).
Returns an indication of the number of arguments accepted by a method. Returns a nonnegative integer for methods that take a fixed number of arguments. For Ruby methods that take a variable number of arguments, returns -n-1, where n is the number of required arguments. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. For methods written in C, returns -1 if the call takes a variable number of arguments.
class C def one; end def two(a); end def three(*a); end def four(a, b); end def five(a, b, *c); end def six(a, b, *c, &d); end def seven(a, b, x:0); end def eight(x:, y:); end def nine(x:, y:, **z); end def ten(*a, x:, y:); end end c = C.new c.method(:one).arity #=> 0 c.method(:two).arity #=> 1 c.method(:three).arity #=> -1 c.method(:four).arity #=> 2 c.method(:five).arity #=> -3 c.method(:six).arity #=> -3 c.method(:seven).arity #=> -3 c.method(:eight).arity #=> 1 c.method(:nine).arity #=> 1 c.method(:ten).arity #=> -2 "cat".method(:size).arity #=> 0 "cat".method(:replace).arity #=> 1 "cat".method(:squeeze).arity #=> -1 "cat".method(:count).arity #=> -1
Returns the name of the underlying method.
"cat".method(:count).inspect #=> "#<Method: String#count>"