Results for: "module_function"

No documentation available

When rubygems/test_case is required the default user interaction is a MockGemUi.

Module that defines the default UserInteraction. Any class including this module will have access to the ui method that returns the default UI.

No documentation available
No documentation available
No documentation available

Potentially raised when a specification is validated.

No documentation available

Represents an error communicating via HTTP.

Raised by Resolver when a dependency requests a gem for which there is no spec.

Keyword completion module. This allows partial arguments to be specified and resolved against a list of acceptable values.

No documentation available

Mixin methods for local and remote Gem::Command options.

No documentation available

An Encoding instance represents a character encoding usable in Ruby. It is defined as a constant under the Encoding namespace. It has a name and optionally, aliases:

Encoding::ISO_8859_1.name
#=> "ISO-8859-1"

Encoding::ISO_8859_1.names
#=> ["ISO-8859-1", "ISO8859-1"]

Ruby methods dealing with encodings return or accept Encoding instances as arguments (when a method accepts an Encoding instance as an argument, it can be passed an Encoding name or alias instead).

"some string".encoding
#=> #<Encoding:UTF-8>

string = "some string".encode(Encoding::ISO_8859_1)
#=> "some string"
string.encoding
#=> #<Encoding:ISO-8859-1>

"some string".encode "ISO-8859-1"
#=> "some string"

Encoding::ASCII_8BIT is a special encoding that is usually used for a byte string, not a character string. But as the name insists, its characters in the range of ASCII are considered as ASCII characters. This is useful when you use ASCII-8BIT characters with other ASCII compatible characters.

Changing an encoding

The associated Encoding of a String can be changed in two different ways.

First, it is possible to set the Encoding of a string to a new Encoding without changing the internal byte representation of the string, with String#force_encoding. This is how you can tell Ruby the correct encoding of a string.

string
#=> "R\xC3\xA9sum\xC3\xA9"
string.encoding
#=> #<Encoding:ISO-8859-1>
string.force_encoding(Encoding::UTF_8)
#=> "R\u00E9sum\u00E9"

Second, it is possible to transcode a string, i.e. translate its internal byte representation to another encoding. Its associated encoding is also set to the other encoding. See String#encode for the various forms of transcoding, and the Encoding::Converter class for additional control over the transcoding process.

string
#=> "R\u00E9sum\u00E9"
string.encoding
#=> #<Encoding:UTF-8>
string = string.encode!(Encoding::ISO_8859_1)
#=> "R\xE9sum\xE9"
string.encoding
#=> #<Encoding::ISO-8859-1>

Script encoding

All Ruby script code has an associated Encoding which any String literal created in the source code will be associated to.

The default script encoding is Encoding::UTF-8 after v2.0, but it can be changed by a magic comment on the first line of the source code file (or second line, if there is a shebang line on the first). The comment must contain the word coding or encoding, followed by a colon, space and the Encoding name or alias:

# encoding: UTF-8

"some string".encoding
#=> #<Encoding:UTF-8>

The __ENCODING__ keyword returns the script encoding of the file which the keyword is written:

# encoding: ISO-8859-1

__ENCODING__
#=> #<Encoding:ISO-8859-1>

ruby -K will change the default locale encoding, but this is not recommended. Ruby source files should declare its script encoding by a magic comment even when they only depend on US-ASCII strings or regular expressions.

Locale encoding

The default encoding of the environment. Usually derived from locale.

see Encoding.locale_charmap, Encoding.find(‘locale’)

Filesystem encoding

The default encoding of strings from the filesystem of the environment. This is used for strings of file names or paths.

see Encoding.find(‘filesystem’)

External encoding

Each IO object has an external encoding which indicates the encoding that Ruby will use to read its data. By default Ruby sets the external encoding of an IO object to the default external encoding. The default external encoding is set by locale encoding or the interpreter -E option. Encoding.default_external returns the current value of the external encoding.

ENV["LANG"]
#=> "UTF-8"
Encoding.default_external
#=> #<Encoding:UTF-8>

$ ruby -E ISO-8859-1 -e "p Encoding.default_external"
#<Encoding:ISO-8859-1>

$ LANG=C ruby -e 'p Encoding.default_external'
#<Encoding:US-ASCII>

The default external encoding may also be set through Encoding.default_external=, but you should not do this as strings created before and after the change will have inconsistent encodings. Instead use ruby -E to invoke ruby with the correct external encoding.

When you know that the actual encoding of the data of an IO object is not the default external encoding, you can reset its external encoding with IO#set_encoding or set it at IO object creation (see IO.new options).

Internal encoding

To process the data of an IO object which has an encoding different from its external encoding, you can set its internal encoding. Ruby will use this internal encoding to transcode the data when it is read from the IO object.

Conversely, when data is written to the IO object it is transcoded from the internal encoding to the external encoding of the IO object.

The internal encoding of an IO object can be set with IO#set_encoding or at IO object creation (see IO.new options).

The internal encoding is optional and when not set, the Ruby default internal encoding is used. If not explicitly set this default internal encoding is nil meaning that by default, no transcoding occurs.

The default internal encoding can be set with the interpreter option -E. Encoding.default_internal returns the current internal encoding.

$ ruby -e 'p Encoding.default_internal'
nil

$ ruby -E ISO-8859-1:UTF-8 -e "p [Encoding.default_external, \
  Encoding.default_internal]"
[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>]

The default internal encoding may also be set through Encoding.default_internal=, but you should not do this as strings created before and after the change will have inconsistent encodings. Instead use ruby -E to invoke ruby with the correct internal encoding.

IO encoding example

In the following example a UTF-8 encoded string “Ru00E9sumu00E9” is transcoded for output to ISO-8859-1 encoding, then read back in and transcoded to UTF-8:

string = "R\u00E9sum\u00E9"

open("transcoded.txt", "w:ISO-8859-1") do |io|
  io.write(string)
end

puts "raw text:"
p File.binread("transcoded.txt")
puts

open("transcoded.txt", "r:ISO-8859-1:UTF-8") do |io|
  puts "transcoded text:"
  p io.read
end

While writing the file, the internal encoding is not specified as it is only necessary for reading. While reading the file both the internal and external encoding must be specified to obtain the correct result.

$ ruby t.rb
raw text:
"R\xE9sum\xE9"

transcoded text:
"R\u00E9sum\u00E9"

Raised when a feature is not implemented on the current platform. For example, methods depending on the fsync or fork system calls may raise this exception if the underlying operating system or Ruby runtime does not support them.

Note that if fork raises a NotImplementedError, then respond_to?(:fork) returns false.

EncodingError is the base class for encoding errors.

Use the Monitor class when you want to have a lock object for blocks with mutual exclusion.

require 'monitor'

lock = Monitor.new
lock.synchronize do
  # exclusive access
end

fileutils.rb

Copyright © 2000-2007 Minero Aoki

This program is free software. You can distribute/modify this program under the same terms of ruby.

module FileUtils

Namespace for several file utility methods for copying, moving, removing, etc.

Module Functions

require 'fileutils'

FileUtils.cd(dir, options)
FileUtils.cd(dir, options) {|dir| block }
FileUtils.pwd()
FileUtils.mkdir(dir, options)
FileUtils.mkdir(list, options)
FileUtils.mkdir_p(dir, options)
FileUtils.mkdir_p(list, options)
FileUtils.rmdir(dir, options)
FileUtils.rmdir(list, options)
FileUtils.ln(target, link, options)
FileUtils.ln(targets, dir, options)
FileUtils.ln_s(target, link, options)
FileUtils.ln_s(targets, dir, options)
FileUtils.ln_sf(target, link, options)
FileUtils.cp(src, dest, options)
FileUtils.cp(list, dir, options)
FileUtils.cp_r(src, dest, options)
FileUtils.cp_r(list, dir, options)
FileUtils.mv(src, dest, options)
FileUtils.mv(list, dir, options)
FileUtils.rm(list, options)
FileUtils.rm_r(list, options)
FileUtils.rm_rf(list, options)
FileUtils.install(src, dest, options)
FileUtils.chmod(mode, list, options)
FileUtils.chmod_R(mode, list, options)
FileUtils.chown(user, group, list, options)
FileUtils.chown_R(user, group, list, options)
FileUtils.touch(list, options)

The options parameter is a hash of options, taken from the list :force, :noop, :preserve, and :verbose. :noop means that no changes are made. The other three are obvious. Each method documents the options that it honours.

All methods that have the concept of a “source” file or directory can take either one file or a list of files in that argument. See the method documentation for examples.

There are some ‘low level’ methods, which do not accept any option:

FileUtils.copy_entry(src, dest, preserve = false, dereference = false)
FileUtils.copy_file(src, dest, preserve = false, dereference = true)
FileUtils.copy_stream(srcstream, deststream)
FileUtils.remove_entry(path, force = false)
FileUtils.remove_entry_secure(path, force = false)
FileUtils.remove_file(path, force = false)
FileUtils.compare_file(path_a, path_b)
FileUtils.compare_stream(stream_a, stream_b)
FileUtils.uptodate?(file, cmp_list)

module FileUtils::Verbose

This module has all methods of FileUtils module, but it outputs messages before acting. This equates to passing the :verbose flag to methods in FileUtils.

module FileUtils::NoWrite

This module has all methods of FileUtils module, but never changes files/directories. This equates to passing the :noop flag to methods in FileUtils.

module FileUtils::DryRun

This module has all methods of FileUtils module, but never changes files/directories. This equates to passing the :noop and :verbose flags to methods in FileUtils.

In concurrent programming, a monitor is an object or module intended to be used safely by more than one thread. The defining characteristic of a monitor is that its methods are executed with mutual exclusion. That is, at each point in time, at most one thread may be executing any of its methods. This mutual exclusion greatly simplifies reasoning about the implementation of monitors compared to reasoning about parallel code that updates a data structure.

You can read more about the general principles on the Wikipedia page for Monitors

Examples

Simple object.extend

require 'monitor.rb'

buf = []
buf.extend(MonitorMixin)
empty_cond = buf.new_cond

# consumer
Thread.start do
  loop do
    buf.synchronize do
      empty_cond.wait_while { buf.empty? }
      print buf.shift
    end
  end
end

# producer
while line = ARGF.gets
  buf.synchronize do
    buf.push(line)
    empty_cond.signal
  end
end

The consumer thread waits for the producer thread to push a line to buf while buf.empty?. The producer thread (main thread) reads a line from ARGF and pushes it into buf then calls empty_cond.signal to notify the consumer thread of new data.

Simple Class include

require 'monitor'

class SynchronizedArray < Array

  include MonitorMixin

  def initialize(*args)
    super(*args)
  end

  alias :old_shift :shift
  alias :old_unshift :unshift

  def shift(n=1)
    self.synchronize do
      self.old_shift(n)
    end
  end

  def unshift(item)
    self.synchronize do
      self.old_unshift(item)
    end
  end

  # other methods ...
end

SynchronizedArray implements an Array with synchronized access to items. This Class is implemented as subclass of Array which includes the MonitorMixin module.

The Singleton module implements the Singleton pattern.

Usage

To use Singleton, include the module in your class.

class Klass
   include Singleton
   # ...
end

This ensures that only one instance of Klass can be created.

a,b  = Klass.instance, Klass.instance

a == b
# => true

Klass.new
# => NoMethodError - new is private ...

The instance is created at upon the first call of Klass.instance().

class OtherKlass
  include Singleton
  # ...
end

ObjectSpace.each_object(OtherKlass){}
# => 0

OtherKlass.instance
ObjectSpace.each_object(OtherKlass){}
# => 1

This behavior is preserved under inheritance and cloning.

Implementation

This above is achieved by:

Singleton and Marshal

By default Singleton’s _dump(depth) returns the empty string. Marshalling by default will strip state information, e.g. instance variables and taint state, from the instance. Classes using Singleton can provide custom _load(str) and _dump(depth) methods to retain some of the previous state of the instance.

require 'singleton'

class Example
  include Singleton
  attr_accessor :keep, :strip
  def _dump(depth)
    # this strips the @strip information from the instance
    Marshal.dump(@keep, depth)
  end

  def self._load(str)
    instance.keep = Marshal.load(str)
    instance
  end
end

a = Example.instance
a.keep = "keep this"
a.strip = "get rid of this"
a.taint

stored_state = Marshal.dump(a)

a.keep = nil
a.strip = nil
b = Marshal.load(stored_state)
p a == b  #  => true
p a.keep  #  => "keep this"
p a.strip #  => nil

define UnicodeNormalize module here so that we don’t have to look it up

No documentation available
No documentation available
No documentation available
No documentation available
Search took: 7ms  ·  Total Results: 3605