Results for: "partition"

Reset the dir and path values. The next time dir or path is requested, the values will be calculated from scratch. This is mainly used by the unit tests to provide test isolation.

Safely write a file in binary mode on all platforms.

A Gem::Version for the currently running Ruby.

A Gem::Version for the currently running RubyGems

Returns a time returned by POSIX clock_gettime() function.

p Process.clock_gettime(Process::CLOCK_MONOTONIC)
#=> 896053.968060096

clock_id specifies a kind of clock. It is specified as a constant which begins with Process::CLOCK_ such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.

The supported constants depends on OS and version. Ruby provides following types of clock_id if available.

CLOCK_REALTIME

SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12

CLOCK_MONOTONIC

SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12

CLOCK_PROCESS_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, OpenBSD 5.4, macOS 10.12

CLOCK_THREAD_CPUTIME_ID

SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12

CLOCK_VIRTUAL

FreeBSD 3.0, OpenBSD 2.1

CLOCK_PROF

FreeBSD 3.0, OpenBSD 2.1

CLOCK_REALTIME_FAST

FreeBSD 8.1

CLOCK_REALTIME_PRECISE

FreeBSD 8.1

CLOCK_REALTIME_COARSE

Linux 2.6.32

CLOCK_REALTIME_ALARM

Linux 3.0

CLOCK_MONOTONIC_FAST

FreeBSD 8.1

CLOCK_MONOTONIC_PRECISE

FreeBSD 8.1

CLOCK_MONOTONIC_COARSE

Linux 2.6.32

CLOCK_MONOTONIC_RAW

Linux 2.6.28, macOS 10.12

CLOCK_MONOTONIC_RAW_APPROX

macOS 10.12

CLOCK_BOOTTIME

Linux 2.6.39

CLOCK_BOOTTIME_ALARM

Linux 3.0

CLOCK_UPTIME

FreeBSD 7.0, OpenBSD 5.5

CLOCK_UPTIME_FAST

FreeBSD 8.1

CLOCK_UPTIME_RAW

macOS 10.12

CLOCK_UPTIME_RAW_APPROX

macOS 10.12

CLOCK_UPTIME_PRECISE

FreeBSD 8.1

CLOCK_SECOND

FreeBSD 8.1

Note that SUS stands for Single Unix Specification. SUS contains POSIX and clock_gettime is defined in the POSIX part. SUS defines CLOCK_REALTIME mandatory but CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.

Also, several symbols are accepted as clock_id. There are emulations for clock_gettime().

For example, Process::CLOCK_REALTIME is defined as :GETTIMEOFDAY_BASED_CLOCK_REALTIME when clock_gettime() is not available.

Emulations for CLOCK_REALTIME:

:GETTIMEOFDAY_BASED_CLOCK_REALTIME

Use gettimeofday() defined by SUS. (SUSv4 obsoleted it, though.) The resolution is 1 microsecond.

:TIME_BASED_CLOCK_REALTIME

Use time() defined by ISO C. The resolution is 1 second.

Emulations for CLOCK_MONOTONIC:

:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC

Use mach_absolute_time(), available on Darwin. The resolution is CPU dependent.

:TIMES_BASED_CLOCK_MONOTONIC

Use the result value of times() defined by POSIX. POSIX defines it as “times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)”. For example, GNU/Linux returns a value based on jiffies and it is monotonic. However, 4.4BSD uses gettimeofday() and it is not monotonic. (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.) The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and cannot represent over 497 days.

Emulations for CLOCK_PROCESS_CPUTIME_ID:

:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID

Use getrusage() defined by SUS. getrusage() is used with RUSAGE_SELF to obtain the time only for the calling process (excluding the time for child processes). The result is addition of user time (ru_utime) and system time (ru_stime). The resolution is 1 microsecond.

:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID

Use times() defined by POSIX. The result is addition of user time (tms_utime) and system time (tms_stime). tms_cutime and tms_cstime are ignored to exclude the time for child processes. The resolution is the clock tick. “getconf CLK_TCK” command shows the clock ticks per second. (The clock ticks per second is defined by HZ macro in older systems.) If it is 100, the resolution is 10 millisecond.

:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID

Use clock() defined by ISO C. The resolution is 1/CLOCKS_PER_SEC. CLOCKS_PER_SEC is the C-level macro defined by time.h. SUS defines CLOCKS_PER_SEC is 1000000. Non-Unix systems may define it a different value, though. If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond. If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.

If the given clock_id is not supported, Errno::EINVAL is raised.

unit specifies a type of the return value.

:float_second

number of seconds as a float (default)

:float_millisecond

number of milliseconds as a float

:float_microsecond

number of microseconds as a float

:second

number of seconds as an integer

:millisecond

number of milliseconds as an integer

:microsecond

number of microseconds as an integer

:nanosecond

number of nanoseconds as an integer

The underlying function, clock_gettime(), returns a number of nanoseconds. Float object (IEEE 754 double) is not enough to represent the return value for CLOCK_REALTIME. If the exact nanoseconds value is required, use :nanoseconds as the unit.

The origin (zero) of the returned value varies. For example, system start up time, process start up time, the Epoch, etc.

The origin in CLOCK_REALTIME is defined as the Epoch (1970-01-01 00:00:00 UTC). But some systems count leap seconds and others doesn’t. So the result can be interpreted differently across systems. Time.now is recommended over CLOCK_REALTIME.

No documentation available

The default mail submission port number, 587.

No documentation available

Munges ary into a valid Tuple.

No documentation available
No documentation available
No documentation available
No documentation available

Removes all installed gems from +@gemhome+.

Set the platform to arch

No documentation available
No documentation available
No documentation available

Extract the first name=“value” pair from content. Works with single quotes according to the constant CONTENT_PATTERN. Return a Hash.

No documentation available
No documentation available

Iterates over strongly connected component in the subgraph reachable from node.

Return value is unspecified.

each_strongly_connected_component_from doesn’t call tsort_each_node.

class G
  include TSort
  def initialize(g)
    @g = g
  end
  def tsort_each_child(n, &b) @g[n].each(&b) end
  def tsort_each_node(&b) @g.each_key(&b) end
end

graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
graph.each_strongly_connected_component_from(2) {|scc| p scc }
#=> [4]
#   [2]

graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
graph.each_strongly_connected_component_from(2) {|scc| p scc }
#=> [4]
#   [2, 3]

Iterates over strongly connected components in a graph. The graph is represented by node and each_child.

node is the first node. each_child should have call method which takes a node argument and yields for each child node.

Return value is unspecified.

TSort.each_strongly_connected_component_from is a class method and it doesn’t need a class to represent a graph which includes TSort.

graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
each_child = lambda {|n, &b| graph[n].each(&b) }
TSort.each_strongly_connected_component_from(1, each_child) {|scc|
  p scc
}
#=> [4]
#   [2, 3]
#   [1]

Adds a certificate to the context. pkey must be a corresponding private key with certificate.

Multiple certificates with different public key type can be added by repeated calls of this method, and OpenSSL will choose the most appropriate certificate during the handshake.

cert=, key=, and extra_chain_cert= are old accessor methods for setting certificate and internally call this method.

Parameters

certificate

A certificate. An instance of OpenSSL::X509::Certificate.

pkey

The private key for certificate. An instance of OpenSSL::PKey::PKey.

extra_certs

Optional. An array of OpenSSL::X509::Certificate. When sending a certificate chain, the certificates specified by this are sent following certificate, in the order in the array.

Example

rsa_cert = OpenSSL::X509::Certificate.new(...)
rsa_pkey = OpenSSL::PKey.read(...)
ca_intermediate_cert = OpenSSL::X509::Certificate.new(...)
ctx.add_certificate(rsa_cert, rsa_pkey, [ca_intermediate_cert])

ecdsa_cert = ...
ecdsa_pkey = ...
another_ca_cert = ...
ctx.add_certificate(ecdsa_cert, ecdsa_pkey, [another_ca_cert])

Note

OpenSSL before the version 1.0.2 could handle only one extra chain across all key types. Calling this method discards the chain set previously.

No documentation available
Search took: 5ms  ·  Total Results: 2971