Results for: "Data"

Generate a JSON document from the Ruby data structure obj and return it. This method disables the checks for circles in Ruby objects.

WARNING: Be careful not to pass any Ruby data structures with circles as obj argument because this will cause JSON to go into an infinite loop.

Generate a JSON document from the Ruby data structure obj and return it. The returned document is a prettier form of the document returned by unparse.

The opts argument can be used to configure the generator. See the generate method for a more detailed explanation.

Returns the source file origin from the given object.

See ::trace_object_allocations for more information and examples.

Returns the original line from source for from the given object.

See ::trace_object_allocations for more information and examples.

Returns the table for calculating CRC checksum as an array.

Returns true if the named file is readable by the real user and group id of this process. See access(3).

If file_name is readable by others, returns an integer representing the file permission bits of file_name. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix systems, see stat(2).

file_name can be an IO object.

File.world_readable?("/etc/passwd")           #=> 420
m = File.world_readable?("/etc/passwd")
sprintf("%o", m)                              #=> "644"

Returns true if the named file is writable by the real user and group id of this process. See access(3)

If file_name is writable by others, returns an integer representing the file permission bits of file_name. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix systems, see stat(2).

file_name can be an IO object.

File.world_writable?("/tmp")                  #=> 511
m = File.world_writable?("/tmp")
sprintf("%o", m)                              #=> "777"

Returns true if the named file is executable by the real user and group id of this process. See access(3).

Returns the number of malloc() allocations.

Only available if ruby was built with CALC_EXACT_MALLOC_SIZE.

Start a dRuby server locally.

The new dRuby server will become the primary server, even if another server is currently the primary server.

uri is the URI for the server to bind to. If nil, the server will bind to random port on the default local host name and use the default dRuby protocol.

front is the server’s front object. This may be nil.

config is the configuration for the new server. This may be nil.

See DRbServer::new.

Start a dRuby server locally.

The new dRuby server will become the primary server, even if another server is currently the primary server.

uri is the URI for the server to bind to. If nil, the server will bind to random port on the default local host name and use the default dRuby protocol.

front is the server’s front object. This may be nil.

config is the configuration for the new server. This may be nil.

See DRbServer::new.

Set the default ACL to acl.

See DRb::DRbServer.default_acl.

Set the default ACL to acl.

See DRb::DRbServer.default_acl.

No documentation available
No documentation available

Takes a hash as its argument. The key is a symbol or an array of symbols. These symbols correspond to method names. The value is the accessor to which the methods will be delegated.

No documentation available
No documentation available

Searches for the executable bin on path. The default path is your PATH environment variable. If that isn’t defined, it will resort to searching /usr/local/bin, /usr/ucb, /usr/bin and /bin.

If found, it will return the full path, including the executable name, of where it was found.

Note that this method does not actually affect the generated Makefile.

Generates a header file consisting of the various macro definitions generated by other methods such as have_func and have_header. These are then wrapped in a custom #ifndef based on the header file name, which defaults to “extconf.h”.

For example:

# extconf.rb
require 'mkmf'
have_func('realpath')
have_header('sys/utime.h')
create_header
create_makefile('foo')

The above script would generate the following extconf.h file:

#ifndef EXTCONF_H
#define EXTCONF_H
#define HAVE_REALPATH 1
#define HAVE_SYS_UTIME_H 1
#endif

Given that the create_header method generates a file based on definitions set earlier in your extconf.rb file, you will probably want to make this one of the last methods you call in your script.

Generates the Makefile for your extension, passing along any options and preprocessor constants that you may have generated through other methods.

The target name should correspond the name of the global function name defined within your C extension, minus the Init_. For example, if your C extension is defined as Init_foo, then your target would simply be “foo”.

If any “/” characters are present in the target name, only the last name is interpreted as the target name, and the rest are considered toplevel directory names, and the generated Makefile will be altered accordingly to follow that directory structure.

For example, if you pass “test/foo” as a target name, your extension will be installed under the “test” directory. This means that in order to load the file within a Ruby program later, that directory structure will have to be followed, e.g. require 'test/foo'.

The srcprefix should be used when your source files are not in the same directory as your build script. This will not only eliminate the need for you to manually copy the source files into the same directory as your build script, but it also sets the proper target_prefix in the generated Makefile.

Setting the target_prefix will, in turn, install the generated binary in a directory under your RbConfig::CONFIG['sitearchdir'] that mimics your local filesystem when you run make install.

For example, given the following file tree:

ext/
  extconf.rb
  test/
    foo.c

And given the following code:

create_makefile('test/foo', 'test')

That will set the target_prefix in the generated Makefile to “test”. That, in turn, will create the following file tree when installed via the make install command:

/path/to/ruby/sitearchdir/test/foo.so

It is recommended that you use this approach to generate your makefiles, instead of copying files around manually, because some third party libraries may depend on the target_prefix being set properly.

The srcprefix argument can be used to override the default source directory, i.e. the current directory. It is included as part of the VPATH and added to the list of INCFLAGS.

Open3.pipeline_start starts a list of commands as a pipeline. No pipes are created for stdin of the first command and stdout of the last command.

Open3.pipeline_start(cmd1, cmd2, ... [, opts]) {|wait_threads|
  ...
}

wait_threads = Open3.pipeline_start(cmd1, cmd2, ... [, opts])
...

Each cmd is a string or an array. If it is an array, the elements are passed to Process.spawn.

cmd:
  commandline                              command line string which is passed to a shell
  [env, commandline, opts]                 command line string which is passed to a shell
  [env, cmdname, arg1, ..., opts]          command name and one or more arguments (no shell)
  [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell)

Note that env and opts are optional, as for Process.spawn.

Example:

# Run xeyes in 10 seconds.
Open3.pipeline_start("xeyes") {|ts|
  sleep 10
  t = ts[0]
  Process.kill("TERM", t.pid)
  p t.value #=> #<Process::Status: pid 911 SIGTERM (signal 15)>
}

# Convert pdf to ps and send it to a printer.
# Collect error message of pdftops and lpr.
pdf_file = "paper.pdf"
printer = "printer-name"
err_r, err_w = IO.pipe
Open3.pipeline_start(["pdftops", pdf_file, "-"],
                     ["lpr", "-P#{printer}"],
                     :err=>err_w) {|ts|
  err_w.close
  p err_r.read # error messages of pdftops and lpr.
}

Open3.pipeline_start starts a list of commands as a pipeline. No pipes are created for stdin of the first command and stdout of the last command.

Open3.pipeline_start(cmd1, cmd2, ... [, opts]) {|wait_threads|
  ...
}

wait_threads = Open3.pipeline_start(cmd1, cmd2, ... [, opts])
...

Each cmd is a string or an array. If it is an array, the elements are passed to Process.spawn.

cmd:
  commandline                              command line string which is passed to a shell
  [env, commandline, opts]                 command line string which is passed to a shell
  [env, cmdname, arg1, ..., opts]          command name and one or more arguments (no shell)
  [env, [cmdname, argv0], arg1, ..., opts] command name and arguments including argv[0] (no shell)

Note that env and opts are optional, as for Process.spawn.

Example:

# Run xeyes in 10 seconds.
Open3.pipeline_start("xeyes") {|ts|
  sleep 10
  t = ts[0]
  Process.kill("TERM", t.pid)
  p t.value #=> #<Process::Status: pid 911 SIGTERM (signal 15)>
}

# Convert pdf to ps and send it to a printer.
# Collect error message of pdftops and lpr.
pdf_file = "paper.pdf"
printer = "printer-name"
err_r, err_w = IO.pipe
Open3.pipeline_start(["pdftops", pdf_file, "-"],
                     ["lpr", "-P#{printer}"],
                     :err=>err_w) {|ts|
  err_w.close
  p err_r.read # error messages of pdftops and lpr.
}
Search took: 7ms  ·  Total Results: 1625