HTTPAuth
provides both basic and digest authentication.
To enable authentication for requests in WEBrick
you will need a user database and an authenticator. To start, here’s an Htpasswd
database for use with a DigestAuth
authenticator:
config = { :Realm => 'DigestAuth example realm' } htpasswd = WEBrick::HTTPAuth::Htpasswd.new 'my_password_file' htpasswd.auth_type = WEBrick::HTTPAuth::DigestAuth htpasswd.set_passwd config[:Realm], 'username', 'password' htpasswd.flush
The :Realm
is used to provide different access to different groups across several resources on a server. Typically you’ll need only one realm for a server.
This database can be used to create an authenticator:
config[:UserDB] = htpasswd digest_auth = WEBrick::HTTPAuth::DigestAuth.new config
To authenticate a request call authenticate with a request and response object in a servlet:
def do_GET req, res @authenticator.authenticate req, res end
For digest authentication the authenticator must not be created every request, it must be passed in as an option via WEBrick::HTTPServer#mount
.
HTTPUtils
provides utility methods for working with the HTTP protocol.
This module is generally used internally by WEBrick
Implementation of an X.509 certificate as specified in RFC 5280. Provides access to a certificate’s attributes and allows certificates to be read from a string, but also supports the creation of new certificates from scratch.
Certificate
is capable of handling DER-encoded certificates and certificates encoded in OpenSSL’s PEM format.
raw = File.read "cert.cer" # DER- or PEM-encoded certificate = OpenSSL::X509::Certificate.new raw
A certificate may be encoded in DER format
cert = ... File.open("cert.cer", "wb") { |f| f.print cert.to_der }
or in PEM format
cert = ... File.open("cert.pem", "wb") { |f| f.print cert.to_pem }
X.509 certificates are associated with a private/public key pair, typically a RSA, DSA or ECC key (see also OpenSSL::PKey::RSA
, OpenSSL::PKey::DSA
and OpenSSL::PKey::EC
), the public key itself is stored within the certificate and can be accessed in form of an OpenSSL::PKey
. Certificates are typically used to be able to associate some form of identity with a key pair, for example web servers serving pages over HTTPs use certificates to authenticate themselves to the user.
The public key infrastructure (PKI) model relies on trusted certificate authorities (“root CAs”) that issue these certificates, so that end users need to base their trust just on a selected few authorities that themselves again vouch for subordinate CAs issuing their certificates to end users.
The OpenSSL::X509
module provides the tools to set up an independent PKI, similar to scenarios where the ‘openssl’ command line tool is used for issuing certificates in a private PKI.
First, we need to create a “self-signed” root certificate. To do so, we need to generate a key first. Please note that the choice of “1” as a serial number is considered a security flaw for real certificates. Secure choices are integers in the two-digit byte range and ideally not sequential but secure random numbers, steps omitted here to keep the example concise.
root_key = OpenSSL::PKey::RSA.new 2048 # the CA's public/private key root_ca = OpenSSL::X509::Certificate.new root_ca.version = 2 # cf. RFC 5280 - to make it a "v3" certificate root_ca.serial = 1 root_ca.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby CA" root_ca.issuer = root_ca.subject # root CA's are "self-signed" root_ca.public_key = root_key.public_key root_ca.not_before = Time.now root_ca.not_after = root_ca.not_before + 2 * 365 * 24 * 60 * 60 # 2 years validity ef = OpenSSL::X509::ExtensionFactory.new ef.subject_certificate = root_ca ef.issuer_certificate = root_ca root_ca.add_extension(ef.create_extension("basicConstraints","CA:TRUE",true)) root_ca.add_extension(ef.create_extension("keyUsage","keyCertSign, cRLSign", true)) root_ca.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false)) root_ca.add_extension(ef.create_extension("authorityKeyIdentifier","keyid:always",false)) root_ca.sign(root_key, OpenSSL::Digest::SHA256.new)
The next step is to create the end-entity certificate using the root CA certificate.
key = OpenSSL::PKey::RSA.new 2048 cert = OpenSSL::X509::Certificate.new cert.version = 2 cert.serial = 2 cert.subject = OpenSSL::X509::Name.parse "/DC=org/DC=ruby-lang/CN=Ruby certificate" cert.issuer = root_ca.subject # root CA is the issuer cert.public_key = key.public_key cert.not_before = Time.now cert.not_after = cert.not_before + 1 * 365 * 24 * 60 * 60 # 1 years validity ef = OpenSSL::X509::ExtensionFactory.new ef.subject_certificate = cert ef.issuer_certificate = root_ca cert.add_extension(ef.create_extension("keyUsage","digitalSignature", true)) cert.add_extension(ef.create_extension("subjectKeyIdentifier","hash",false)) cert.sign(root_key, OpenSSL::Digest::SHA256.new)
The parent class for all constructed encodings. The value attribute of a Constructive
is always an Array. Attributes are the same as for ASN1Data
, with the addition of tagging.
Most constructed encodings come in the form of a SET or a SEQUENCE. These encodings are represented by one of the two sub-classes of Constructive:
OpenSSL::ASN1::Sequence
Please note that tagged sequences and sets are still parsed as instances of ASN1Data
. Find
further details on tagged values there.
int = OpenSSL::ASN1::Integer.new(1) str = OpenSSL::ASN1::PrintableString.new('abc') sequence = OpenSSL::ASN1::Sequence.new( [ int, str ] )
int = OpenSSL::ASN1::Integer.new(1) str = OpenSSL::ASN1::PrintableString.new('abc') set = OpenSSL::ASN1::Set.new( [ int, str ] )
An OpenSSL::OCSP::Response
contains the status of a certificate check which is created from an OpenSSL::OCSP::Request
.
An OpenSSL::OCSP::BasicResponse
contains the status of a certificate check which is created from an OpenSSL::OCSP::Request
. A BasicResponse
is more detailed than a Response
.
An OpenSSL::OCSP::CertificateId
identifies a certificate to the CA so that a status check can be performed.
Generic exception that is raised if an operation on an RSA
PKey
fails unexpectedly or in case an instantiation of an instance of RSA
fails due to non-conformant input data.
See Net::HTTPGenericRequest
for attributes and methods.
This class represents a response received by the SMTP
server. Instances of this class are created by the SMTP
class; they should not be directly created by the user. For more information on SMTP
responses, view Section 4.2 of RFC 5321