Results for: "to_proc"

Raised by transcoding methods when a named encoding does not correspond with a known converter.

No documentation available

Raised by Timeout.timeout when the block times out.

OpenSSL::OCSP implements Online Certificate Status Protocol requests and responses.

Creating and sending an OCSP request requires a subject certificate that contains an OCSP URL in an authorityInfoAccess extension and the issuer certificate for the subject certificate. First, load the issuer and subject certificates:

subject = OpenSSL::X509::Certificate.new subject_pem
issuer  = OpenSSL::X509::Certificate.new issuer_pem

To create the request we need to create a certificate ID for the subject certificate so the CA knows which certificate we are asking about:

digest = OpenSSL::Digest::SHA1.new
certificate_id =
  OpenSSL::OCSP::CertificateId.new subject, issuer, digest

Then create a request and add the certificate ID to it:

request = OpenSSL::OCSP::Request.new
request.add_certid certificate_id

Adding a nonce to the request protects against replay attacks but not all CA process the nonce.

request.add_nonce

To submit the request to the CA for verification we need to extract the OCSP URI from the subject certificate:

authority_info_access = subject.extensions.find do |extension|
  extension.oid == 'authorityInfoAccess'
end

descriptions = authority_info_access.value.split "\n"
ocsp = descriptions.find do |description|
  description.start_with? 'OCSP'
end

require 'uri'

ocsp_uri = URI ocsp[/URI:(.*)/, 1]

To submit the request we’ll POST the request to the OCSP URI (per RFC 2560). Note that we only handle HTTP requests and don’t handle any redirects in this example, so this is insufficient for serious use.

require 'net/http'

http_response =
  Net::HTTP.start ocsp_uri.hostname, ocsp.port do |http|
    http.post ocsp_uri.path, request.to_der,
              'content-type' => 'application/ocsp-request'
end

response = OpenSSL::OCSP::Response.new http_response.body
response_basic = response.basic

First we check if the response has a valid signature. Without a valid signature we cannot trust it. If you get a failure here you may be missing a system certificate store or may be missing the intermediate certificates.

store = OpenSSL::X509::Store.new
store.set_default_paths

unless response_basic.verify [], store then
  raise 'response is not signed by a trusted certificate'
end

The response contains the status information (success/fail). We can display the status as a string:

puts response.status_string #=> successful

Next we need to know the response details to determine if the response matches our request. First we check the nonce. Again, not all CAs support a nonce. See Request#check_nonce for the meanings of the return values.

p request.check_nonce basic_response #=> value from -1 to 3

Then extract the status information for the certificate from the basic response.

single_response = basic_response.find_response(certificate_id)

unless single_response
  raise 'basic_response does not have the status for the certificiate'
end

Then check the validity. A status issued in the future must be rejected.

unless single_response.check_validity
  raise 'this_update is in the future or next_update time has passed'
end

case single_response.cert_status
when OpenSSL::OCSP::V_CERTSTATUS_GOOD
  puts 'certificate is still valid'
when OpenSSL::OCSP::V_CERTSTATUS_REVOKED
  puts "certificate has been revoked at #{single_response.revocation_time}"
when OpenSSL::OCSP::V_CERTSTATUS_UNKNOWN
  puts 'responder doesn't know about the certificate'
end
No documentation available

Module mixed in to all SMTP error classes

No documentation available
No documentation available

Provides a single method deprecate to be used to declare when something is going away.

class Legacy
  def self.klass_method
    # ...
  end

  def instance_method
    # ...
  end

  extend Gem::Deprecate
  deprecate :instance_method, "X.z", 2011, 4

  class << self
    extend Gem::Deprecate
    deprecate :klass_method, :none, 2011, 4
  end
end

Mixin methods for local and remote Gem::Command options.

No documentation available

An implementation of PseudoPrimeGenerator.

Uses EratosthenesSieve.

No documentation available
No documentation available

A class which allows both internal and external iteration.

An Enumerator can be created by the following methods.

Most methods have two forms: a block form where the contents are evaluated for each item in the enumeration, and a non-block form which returns a new Enumerator wrapping the iteration.

enumerator = %w(one two three).each
puts enumerator.class # => Enumerator

enumerator.each_with_object("foo") do |item, obj|
  puts "#{obj}: #{item}"
end

# foo: one
# foo: two
# foo: three

enum_with_obj = enumerator.each_with_object("foo")
puts enum_with_obj.class # => Enumerator

enum_with_obj.each do |item, obj|
  puts "#{obj}: #{item}"
end

# foo: one
# foo: two
# foo: three

This allows you to chain Enumerators together. For example, you can map a list’s elements to strings containing the index and the element as a string via:

puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" }
# => ["0:foo", "1:bar", "2:baz"]

An Enumerator can also be used as an external iterator. For example, Enumerator#next returns the next value of the iterator or raises StopIteration if the Enumerator is at the end.

e = [1,2,3].each   # returns an enumerator object.
puts e.next   # => 1
puts e.next   # => 2
puts e.next   # => 3
puts e.next   # raises StopIteration

You can use this to implement an internal iterator as follows:

def ext_each(e)
  while true
    begin
      vs = e.next_values
    rescue StopIteration
      return $!.result
    end
    y = yield(*vs)
    e.feed y
  end
end

o = Object.new

def o.each
  puts yield
  puts yield(1)
  puts yield(1, 2)
  3
end

# use o.each as an internal iterator directly.
puts o.each {|*x| puts x; [:b, *x] }
# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3

# convert o.each to an external iterator for
# implementing an internal iterator.
puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] }
# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3

Raised to stop the iteration, in particular by Enumerator#next. It is rescued by Kernel#loop.

loop do
  puts "Hello"
  raise StopIteration
  puts "World"
end
puts "Done!"

produces:

Hello
Done!

This library provides three different ways to delegate method calls to an object. The easiest to use is SimpleDelegator. Pass an object to the constructor and all methods supported by the object will be delegated. This object can be changed later.

Going a step further, the top level DelegateClass method allows you to easily setup delegation through class inheritance. This is considerably more flexible and thus probably the most common use for this library.

Finally, if you need full control over the delegation scheme, you can inherit from the abstract class Delegator and customize as needed. (If you find yourself needing this control, have a look at Forwardable which is also in the standard library. It may suit your needs better.)

SimpleDelegator’s implementation serves as a nice example of the use of Delegator:

class SimpleDelegator < Delegator
  def __getobj__
    @delegate_sd_obj # return object we are delegating to, required
  end

  def __setobj__(obj)
    @delegate_sd_obj = obj # change delegation object,
                           # a feature we're providing
  end
end

Notes

Be advised, RDoc will not detect delegated methods.

A concrete implementation of Delegator, this class provides the means to delegate all supported method calls to the object passed into the constructor and even to change the object being delegated to at a later time with __setobj__.

class User
  def born_on
    Date.new(1989, 9, 10)
  end
end

class UserDecorator < SimpleDelegator
  def birth_year
    born_on.year
  end
end

decorated_user = UserDecorator.new(User.new)
decorated_user.birth_year  #=> 1989
decorated_user.__getobj__  #=> #<User: ...>

A SimpleDelegator instance can take advantage of the fact that SimpleDelegator is a subclass of Delegator to call super to have methods called on the object being delegated to.

class SuperArray < SimpleDelegator
  def [](*args)
    super + 1
  end
end

SuperArray.new([1])[0]  #=> 2

Here’s a simple example that takes advantage of the fact that SimpleDelegator’s delegation object can be changed at any time.

class Stats
  def initialize
    @source = SimpleDelegator.new([])
  end

  def stats(records)
    @source.__setobj__(records)

    "Elements:  #{@source.size}\n" +
    " Non-Nil:  #{@source.compact.size}\n" +
    "  Unique:  #{@source.uniq.size}\n"
  end
end

s = Stats.new
puts s.stats(%w{James Edward Gray II})
puts
puts s.stats([1, 2, 3, nil, 4, 5, 1, 2])

Prints:

Elements:  4
 Non-Nil:  4
  Unique:  4

Elements:  8
 Non-Nil:  7
  Unique:  6

The GetoptLong class allows you to parse command line options similarly to the GNU getopt_long() C library call. Note, however, that GetoptLong is a pure Ruby implementation.

GetoptLong allows for POSIX-style options like --file as well as single letter options like -f

The empty option -- (two minus symbols) is used to end option processing. This can be particularly important if options have optional arguments.

Here is a simple example of usage:

require 'getoptlong'

opts = GetoptLong.new(
  [ '--help', '-h', GetoptLong::NO_ARGUMENT ],
  [ '--repeat', '-n', GetoptLong::REQUIRED_ARGUMENT ],
  [ '--name', GetoptLong::OPTIONAL_ARGUMENT ]
)

dir = nil
name = nil
repetitions = 1
opts.each do |opt, arg|
  case opt
    when '--help'
      puts <<-EOF
hello [OPTION] ... DIR

-h, --help:
   show help

--repeat x, -n x:
   repeat x times

--name [name]:
   greet user by name, if name not supplied default is John

DIR: The directory in which to issue the greeting.
      EOF
    when '--repeat'
      repetitions = arg.to_i
    when '--name'
      if arg == ''
        name = 'John'
      else
        name = arg
      end
  end
end

if ARGV.length != 1
  puts "Missing dir argument (try --help)"
  exit 0
end

dir = ARGV.shift

Dir.chdir(dir)
for i in (1..repetitions)
  print "Hello"
  if name
    print ", #{name}"
  end
  puts
end

Example command line:

hello -n 6 --name -- /tmp

The Vector class represents a mathematical vector, which is useful in its own right, and also constitutes a row or column of a Matrix.

Method Catalogue

To create a Vector:

To access elements:

To enumerate the elements:

Properties of vectors:

Vector arithmetic:

Vector functions:

Conversion to other data types:

String representations:

Use the Monitor class when you want to have a lock object for blocks with mutual exclusion.

require 'monitor'

lock = Monitor.new
lock.synchronize do
  # exclusive access
end

PStore implements a file based persistence mechanism based on a Hash. User code can store hierarchies of Ruby objects (values) into the data store file by name (keys). An object hierarchy may be just a single object. User code may later read values back from the data store or even update data, as needed.

The transactional behavior ensures that any changes succeed or fail together. This can be used to ensure that the data store is not left in a transitory state, where some values were updated but others were not.

Behind the scenes, Ruby objects are stored to the data store file with Marshal. That carries the usual limitations. Proc objects cannot be marshalled, for example.

Usage example:

require "pstore"

# a mock wiki object...
class WikiPage
  def initialize( page_name, author, contents )
    @page_name = page_name
    @revisions = Array.new

    add_revision(author, contents)
  end

  attr_reader :page_name

  def add_revision( author, contents )
    @revisions << { :created  => Time.now,
                    :author   => author,
                    :contents => contents }
  end

  def wiki_page_references
    [@page_name] + @revisions.last[:contents].scan(/\b(?:[A-Z]+[a-z]+){2,}/)
  end

  # ...
end

# create a new page...
home_page = WikiPage.new( "HomePage", "James Edward Gray II",
                          "A page about the JoysOfDocumentation..." )

# then we want to update page data and the index together, or not at all...
wiki = PStore.new("wiki_pages.pstore")
wiki.transaction do  # begin transaction; do all of this or none of it
  # store page...
  wiki[home_page.page_name] = home_page
  # ensure that an index has been created...
  wiki[:wiki_index] ||= Array.new
  # update wiki index...
  wiki[:wiki_index].push(*home_page.wiki_page_references)
end                   # commit changes to wiki data store file

### Some time later... ###

# read wiki data...
wiki.transaction(true) do  # begin read-only transaction, no changes allowed
  wiki.roots.each do |data_root_name|
    p data_root_name
    p wiki[data_root_name]
  end
end

Transaction modes

By default, file integrity is only ensured as long as the operating system (and the underlying hardware) doesn’t raise any unexpected I/O errors. If an I/O error occurs while PStore is writing to its file, then the file will become corrupted.

You can prevent this by setting pstore.ultra_safe = true. However, this results in a minor performance loss, and only works on platforms that support atomic file renames. Please consult the documentation for ultra_safe for details.

Needless to say, if you’re storing valuable data with PStore, then you should backup the PStore files from time to time.

newton.rb

Solves the nonlinear algebraic equation system f = 0 by Newton’s method. This program is not dependent on BigDecimal.

To call:

  n = nlsolve(f,x)
where n is the number of iterations required,
      x is the initial value vector
      f is an Object which is used to compute the values of the equations to be solved.

It must provide the following methods:

f.values(x)

returns the values of all functions at x

f.zero

returns 0.0

f.one

returns 1.0

f.two

returns 2.0

f.ten

returns 10.0

f.eps

returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.

On exit, x is the solution vector.

No documentation available

In concurrent programming, a monitor is an object or module intended to be used safely by more than one thread. The defining characteristic of a monitor is that its methods are executed with mutual exclusion. That is, at each point in time, at most one thread may be executing any of its methods. This mutual exclusion greatly simplifies reasoning about the implementation of monitors compared to reasoning about parallel code that updates a data structure.

You can read more about the general principles on the Wikipedia page for Monitors

Examples

Simple object.extend

require 'monitor.rb'

buf = []
buf.extend(MonitorMixin)
empty_cond = buf.new_cond

# consumer
Thread.start do
  loop do
    buf.synchronize do
      empty_cond.wait_while { buf.empty? }
      print buf.shift
    end
  end
end

# producer
while line = ARGF.gets
  buf.synchronize do
    buf.push(line)
    empty_cond.signal
  end
end

The consumer thread waits for the producer thread to push a line to buf while buf.empty?. The producer thread (main thread) reads a line from ARGF and pushes it into buf then calls empty_cond.signal to notify the consumer thread of new data.

Simple Class include

require 'monitor'

class SynchronizedArray < Array

  include MonitorMixin

  def initialize(*args)
    super(*args)
  end

  alias :old_shift :shift
  alias :old_unshift :unshift

  def shift(n=1)
    self.synchronize do
      self.old_shift(n)
    end
  end

  def unshift(item)
    self.synchronize do
      self.old_unshift(item)
    end
  end

  # other methods ...
end

SynchronizedArray implements an Array with synchronized access to items. This Class is implemented as subclass of Array which includes the MonitorMixin module.

Search took: 3ms  ·  Total Results: 1909