Results for: "slice"

Replaces the contents of the set with the contents of the given enumerable object and returns self.

set = Set[1, 'c', :s]             #=> #<Set: {1, "c", :s}>
set.replace([1, 2])               #=> #<Set: {1, 2}>
set                               #=> #<Set: {1, 2}>
No documentation available

Unlinks (deletes) the file from the filesystem. One should always unlink the file after using it, as is explained in the “Explicit close” good practice section in the Tempfile overview:

file = Tempfile.new('foo')
begin
   ...do something with file...
ensure
   file.close
   file.unlink   # deletes the temp file
end

On POSIX systems it’s possible to unlink a file before closing it. This practice is explained in detail in the Tempfile overview (section “Unlink after creation”); please refer there for more information.

However, unlink-before-close may not be supported on non-POSIX operating systems. Microsoft Windows is the most notable case: unlinking a non-closed file will result in an error, which this method will silently ignore. If you want to practice unlink-before-close whenever possible, then you should write code like this:

file = Tempfile.new('foo')
file.unlink   # On Windows this silently fails.
begin
   ... do something with file ...
ensure
   file.close!   # Closes the file handle. If the file wasn't unlinked
                 # because #unlink failed, then this method will attempt
                 # to do so again.
end

Returns an array of Thread objects for all threads that are either runnable or stopped.

Thread.new { sleep(200) }
Thread.new { 1000000.times {|i| i*i } }
Thread.new { Thread.stop }
Thread.list.each {|t| p t}

This will produce:

#<Thread:0x401b3e84 sleep>
#<Thread:0x401b3f38 run>
#<Thread:0x401b3fb0 sleep>
#<Thread:0x401bdf4c run>

Returns true if thr is running or sleeping.

thr = Thread.new { }
thr.join                #=> #<Thread:0x401b3fb0 dead>
Thread.current.alive?   #=> true
thr.alive?              #=> false

See also stop? and status.

Returns the current backtrace of the target thread.

Returns the bound receiver of the method object.

Returns an array of all existing Thread objects that belong to this group.

ThreadGroup::Default.list   #=> [#<Thread:0x401bdf4c run>]

Releases the lock and sleeps timeout seconds if it is given and non-nil or forever. Raises ThreadError if mutex wasn’t locked by the current thread.

When the thread is next woken up, it will attempt to reacquire the lock.

Note that this method can wakeup without explicit Thread#wakeup call. For example, receiving signal and so on.

A convenience method for TracePoint.new, that activates the trace automatically.

trace = TracePoint.trace(:call) { |tp| [tp.lineno, tp.event] }
#=> #<TracePoint:enabled>

trace.enabled? #=> true

Line number of the event

Equivalent to Kernel::gets, except readline raises EOFError at end of file.

Returns an array containing the lines returned by calling Kernel.gets(sep) until the end of file.

Suspends the current thread for duration seconds (which may be any number, including a Float with fractional seconds). Returns the actual number of seconds slept (rounded), which may be less than that asked for if another thread calls Thread#run. Called without an argument, sleep() will sleep forever.

Time.new    #=> 2008-03-08 19:56:19 +0900
sleep 1.2   #=> 1
Time.new    #=> 2008-03-08 19:56:20 +0900
sleep 1.9   #=> 2
Time.new    #=> 2008-03-08 19:56:22 +0900

Combines all elements of enum by applying a binary operation, specified by a block or a symbol that names a method or operator.

The inject and reduce methods are aliases. There is no performance benefit to either.

If you specify a block, then for each element in enum the block is passed an accumulator value (memo) and the element. If you specify a symbol instead, then each element in the collection will be passed to the named method of memo. In either case, the result becomes the new value for memo. At the end of the iteration, the final value of memo is the return value for the method.

If you do not explicitly specify an initial value for memo, then the first element of collection is used as the initial value of memo.

# Sum some numbers
(5..10).reduce(:+)                             #=> 45
# Same using a block and inject
(5..10).inject { |sum, n| sum + n }            #=> 45
# Multiply some numbers
(5..10).reduce(1, :*)                          #=> 151200
# Same using a block
(5..10).inject(1) { |product, n| product * n } #=> 151200
# find the longest word
longest = %w{ cat sheep bear }.inject do |memo, word|
   memo.length > word.length ? memo : word
end
longest                                        #=> "sheep"

Returns the number of online processors.

The result is intended as the number of processes to use all available processors.

This method is implemented using:

Example:

require 'etc'
p Etc.nprocessors #=> 4

The result might be smaller number than physical cpus especially when ruby process is bound to specific cpus. This is intended for getting better parallel processing.

Example: (Linux)

linux$ taskset 0x3 ./ruby -retc -e "p Etc.nprocessors"  #=> 2

Encodes string using Ruby’s String.encode

Shows the prompt and reads the inputted line with line editing. The inputted line is added to the history if add_hist is true.

Returns nil when the inputted line is empty and user inputs EOF (Presses ^D on UNIX).

Raises IOError exception if one of below conditions are satisfied.

  1. stdin was closed.

  2. stdout was closed.

This method supports thread. Switches the thread context when waits inputting line.

Supports line edit when inputs line. Provides VI and Emacs editing mode. Default is Emacs editing mode.

NOTE: Terminates ruby interpreter and does not return the terminal status after user pressed ‘^C’ when wait inputting line. Give 3 examples that avoid it.

Can make as follows with Readline::HISTORY constant. It does not record to the history if the inputted line is empty or the same it as last one.

require "readline"

while buf = Readline.readline("> ", true)
  # p Readline::HISTORY.to_a
  Readline::HISTORY.pop if /^\s*$/ =~ buf

  begin
    if Readline::HISTORY[Readline::HISTORY.length-2] == buf
      Readline::HISTORY.pop
    end
  rescue IndexError
  end

  # p Readline::HISTORY.to_a
  print "-> ", buf, "\n"
end

Returns the facility number used in the last call to open()

Returns self, for backward compatibility.

Returns true if the named file is a symbolic link.

Returns true if the named file has the sticky bit set.

Returns true if the named files are identical.

file_1 and file_2 can be an IO object.

open("a", "w") {}
p File.identical?("a", "a")      #=> true
p File.identical?("a", "./a")    #=> true
File.link("a", "b")
p File.identical?("a", "b")      #=> true
File.symlink("a", "c")
p File.identical?("a", "c")      #=> true
open("d", "w") {}
p File.identical?("a", "d")      #=> false
No documentation available
No documentation available
Search took: 5ms  ·  Total Results: 1199