Results for: "slice"

Reads all of the lines in ios, and returns them in an array. Lines are separated by the optional sep. If sep is nil, the rest of the stream is returned as a single record. If the first argument is an integer, or an optional second argument is given, the returning string would not be longer than the given value in bytes. The stream must be opened for reading or an IOError will be raised.

f = File.new("testfile")
f.readlines[0]   #=> "This is line one\n"

f = File.new("testfile", chomp: true)
f.readlines[0]   #=> "This is line one"

See IO.readlines for details about getline_args.

Reads a line as with IO#gets, but raises an EOFError on end of file.

Replaces the content of gdbm with the key-value pairs of other. other must have an each_pair method.

Returns the original string of the pattern.

/ab+c/ix.source #=> "ab+c"

Note that escape sequences are retained as is.

/\x20\+/.source  #=> "\\x20\\+"

Same as sym.to_s.capitalize.intern.

Iterates over and yields a new Pathname object for each element in the given path in descending order.

Pathname.new('/path/to/some/file.rb').descend {|v| p v}
   #<Pathname:/>
   #<Pathname:/path>
   #<Pathname:/path/to>
   #<Pathname:/path/to/some>
   #<Pathname:/path/to/some/file.rb>

Pathname.new('path/to/some/file.rb').descend {|v| p v}
   #<Pathname:path>
   #<Pathname:path/to>
   #<Pathname:path/to/some>
   #<Pathname:path/to/some/file.rb>

Returns an Enumerator if no block was given.

enum = Pathname.new("/usr/bin/ruby").descend
  # ... do stuff ...
enum.each { |e| ... }
  # yields Pathnames /, /usr, /usr/bin, and /usr/bin/ruby.

It doesn’t access the filesystem.

Iterates over and yields a new Pathname object for each element in the given path in ascending order.

Pathname.new('/path/to/some/file.rb').ascend {|v| p v}
   #<Pathname:/path/to/some/file.rb>
   #<Pathname:/path/to/some>
   #<Pathname:/path/to>
   #<Pathname:/path>
   #<Pathname:/>

Pathname.new('path/to/some/file.rb').ascend {|v| p v}
   #<Pathname:path/to/some/file.rb>
   #<Pathname:path/to/some>
   #<Pathname:path/to>
   #<Pathname:path>

Returns an Enumerator if no block was given.

enum = Pathname.new("/usr/bin/ruby").ascend
  # ... do stuff ...
enum.each { |e| ... }
  # yields Pathnames /usr/bin/ruby, /usr/bin, /usr, and /.

It doesn’t access the filesystem.

Returns all the lines from the file.

See IO.readlines.

Read symbolic link.

See File.readlink.

Returns the dirname and the basename in an Array.

See File.split.

See FileTest.sticky?.

See FileTest.symlink?.

Removes a file or directory, using File.unlink if self is a file, or Dir.unlink as necessary.

Return line number of current parsing line. This number starts from 1.

Empties the database, then inserts the given key-value pairs.

This method will work with any object which implements an each_pair method, such as a Hash.

Listens for connections, using the specified int as the backlog. A call to listen only applies if the socket is of type SOCK_STREAM or SOCK_SEQPACKET.

Parameter

Example 1

require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )

Example 2 (listening on an arbitrary port, unix-based systems only):

require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
socket.listen( 1 )

Unix-based Exceptions

On unix based systems the above will work because a new sockaddr struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket is bound by calling bind before it can listen.

If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.

On unix-based based systems the following system exceptions may be raised if the call to listen fails:

Windows Exceptions

On Windows systems the following system exceptions may be raised if the call to listen fails:

See

Accepts a next connection. Returns a new Socket object and Addrinfo object.

serv = Socket.new(:INET, :STREAM, 0)
serv.listen(5)
c = Socket.new(:INET, :STREAM, 0)
c.connect(serv.connect_address)
p serv.accept #=> [#<Socket:fd 6>, #<Addrinfo: 127.0.0.1:48555 TCP>]

Accepts an incoming connection returning an array containing the (integer) file descriptor for the incoming connection, client_socket_fd, and an Addrinfo, client_addrinfo.

Example

# In one script, start this first
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )
client_fd, client_addrinfo = socket.sysaccept
client_socket = Socket.for_fd( client_fd )
puts "The client said, '#{client_socket.readline.chomp}'"
client_socket.puts "Hello from script one!"
socket.close

# In another script, start this second
require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.connect( sockaddr )
socket.puts "Hello from script 2."
puts "The server said, '#{socket.readline.chomp}'"
socket.close

Refer to Socket#accept for the exceptions that may be thrown if the call to sysaccept fails.

See

creates a listening socket bound to self.

Accepts an incoming connection. It returns a new TCPSocket object.

TCPServer.open("127.0.0.1", 14641) {|serv|
  s = serv.accept
  s.puts Time.now
  s.close
}

Returns a file descriptor of a accepted connection.

TCPServer.open("127.0.0.1", 28561) {|serv|
  fd = serv.sysaccept
  s = IO.for_fd(fd)
  s.puts Time.now
  s.close
}

Listens for connections, using the specified int as the backlog. A call to listen only applies if the socket is of type SOCK_STREAM or SOCK_SEQPACKET.

Parameter

Example 1

require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )

Example 2 (listening on an arbitrary port, unix-based systems only):

require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
socket.listen( 1 )

Unix-based Exceptions

On unix based systems the above will work because a new sockaddr struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket is bound by calling bind before it can listen.

If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.

On unix-based based systems the following system exceptions may be raised if the call to listen fails:

Windows Exceptions

On Windows systems the following system exceptions may be raised if the call to listen fails:

See

Accepts an incoming connection. It returns a new UNIXSocket object.

UNIXServer.open("/tmp/sock") {|serv|
  UNIXSocket.open("/tmp/sock") {|c|
    s = serv.accept
    s.puts "hi"
    s.close
    p c.read #=> "hi\n"
  }
}

Accepts a new connection. It returns the new file descriptor which is an integer.

UNIXServer.open("/tmp/sock") {|serv|
  UNIXSocket.open("/tmp/sock") {|c|
    fd = serv.sysaccept
    s = IO.new(fd)
    s.puts "hi"
    s.close
    p c.read #=> "hi\n"
  }
}

Listens for connections, using the specified int as the backlog. A call to listen only applies if the socket is of type SOCK_STREAM or SOCK_SEQPACKET.

Parameter

Example 1

require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' )
socket.bind( sockaddr )
socket.listen( 5 )

Example 2 (listening on an arbitrary port, unix-based systems only):

require 'socket'
include Socket::Constants
socket = Socket.new( AF_INET, SOCK_STREAM, 0 )
socket.listen( 1 )

Unix-based Exceptions

On unix based systems the above will work because a new sockaddr struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket is bound by calling bind before it can listen.

If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.

On unix-based based systems the following system exceptions may be raised if the call to listen fails:

Windows Exceptions

On Windows systems the following system exceptions may be raised if the call to listen fails:

See

Search took: 4ms  ·  Total Results: 1199