Zlib::GzipReader
is the class for reading a gzipped file. GzipReader
should be used as an IO
, or -IO-like, object.
Zlib::GzipReader.open('hoge.gz') {|gz| print gz.read } File.open('hoge.gz') do |f| gz = Zlib::GzipReader.new(f) print gz.read gz.close end
Method
Catalogue The following methods in Zlib::GzipReader
are just like their counterparts in IO
, but they raise Zlib::Error
or Zlib::GzipFile::Error
exception if an error was found in the gzip file.
Be careful of the footer of the gzip file. A gzip file has the checksum of pre-compressed data in its footer. GzipReader
checks all uncompressed data against that checksum at the following cases, and if it fails, raises Zlib::GzipFile::NoFooter
, Zlib::GzipFile::CRCError
, or Zlib::GzipFile::LengthError
exception.
When an reading request is received beyond the end of file (the end of compressed data). That is, when Zlib::GzipReader#read
, Zlib::GzipReader#gets
, or some other methods for reading returns nil.
When Zlib::GzipFile#close
method is called after the object reaches the end of file.
When Zlib::GzipReader#unused
method is called after the object reaches the end of file.
The rest of the methods are adequately described in their own documentation.
Objects of class File::Stat
encapsulate common status information for File
objects. The information is recorded at the moment the File::Stat
object is created; changes made to the file after that point will not be reflected. File::Stat
objects are returned by IO#stat
, File::stat
, File#lstat
, and File::lstat
. Many of these methods return platform-specific values, and not all values are meaningful on all systems. See also Kernel#test
.
The InstructionSequence
class represents a compiled sequence of instructions for the Ruby Virtual Machine.
With it, you can get a handle to the instructions that make up a method or a proc, compile strings of Ruby code down to VM instructions, and disassemble instruction sequences to strings for easy inspection. It is mostly useful if you want to learn how the Ruby VM works, but it also lets you control various settings for the Ruby iseq compiler.
You can find the source for the VM instructions in insns.def
in the Ruby source.
The instruction sequence results will almost certainly change as Ruby changes, so example output in this documentation may be different from what you see.
Superclass of all errors raised in the DRb
module.
Error raised when an error occurs on the underlying communication protocol.
An exception wrapping a DRb::DRbUnknown
object
The default drb protocol which communicates over a TCP socket.
The DRb
TCP protocol URI
looks like: druby://<host>:<port>?<option>
. The option is optional.
Error
types.
A custom InputMethod class used by XMP
for evaluating string io.
Default formatter for log messages.
HTTP response class.
This class wraps together the response header and the response body (the entity requested).
It mixes in the HTTPHeader module, which provides access to response header values both via hash-like methods and via individual readers.
Note that each possible HTTP response code defines its own HTTPResponse
subclass. These are listed below.
All classes are defined under the Net
module. Indentation indicates inheritance. For a list of the classes see Net::HTTP
.