Results for: "pstore"

Returns a network byte ordered string form of the IP address.

Returns a string for DNS reverse lookup. It returns a string in RFC3172 form for an IPv6 address.

No documentation available

Returns the bound receiver of the binding object.

Returns true iff the current severity level allows for the printing of ERROR messages.

Args

logdev

The log device. This is a filename (String) or IO object (typically STDOUT, STDERR, or an open file). reopen the same filename if it is nil, do nothing for IO. Default is nil.

Description

Reopen a log device.

Log an ERROR message.

See info for more information.

Create a matrix by stacking matrices vertically

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]

Create a matrix by stacking matrices horizontally

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]

Returns a section of the matrix. The parameters are either:

Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
  => 9 0 0
     0 5 0

Like Array#[], negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than row_count or column_count respectively.

Returns true if this is a normal matrix. Raises an error if matrix is not square.

Returns true if this is an orthogonal matrix Raises an error if matrix is not square.

Returns true if all entries of the matrix are real.

Returns true if this is a regular (i.e. non-singular) matrix.

Returns true if this is a square matrix.

Returns a new matrix resulting by stacking horizontally the receiver with the given matrices

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]

Returns a new matrix resulting by stacking vertically the receiver with the given matrices

x = Matrix[[1, 2], [3, 4]]
y = Matrix[[5, 6], [7, 8]]
x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]

Returns the Eigensystem of the matrix; see EigenvalueDecomposition.

m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true

Returns the real part of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i  i  0
        1  2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
  =>    1  0  0
        1  2  3

Returns an array containing matrices corresponding to the real and imaginary parts of the matrix

m.rect == [m.real, m.imag] # ==> true for all matrices m

No documentation available

Returns an array of arrays that describe the rows of the matrix.

Overrides Object#to_s

No documentation available

Returns a new vector with the same direction but with norm 1.

v = Vector[5,8,2].normalize
# => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505]
v.norm => 1.0
Search took: 2ms  ·  Total Results: 3307