Returns the name of variable.
tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'XlSheetType') variables = tobj.variables variables.each do |variable| puts "#{variable.name}" end The result of above script is following: xlChart xlDialogSheet xlExcel4IntlMacroSheet xlExcel4MacroSheet xlWorksheet
Rebuilds the hash based on the current hash values for each key. If values of key objects have changed since they were inserted, this method will reindex hsh. If Hash#rehash
is called while an iterator is traversing the hash, a RuntimeError
will be raised in the iterator.
a = [ "a", "b" ] c = [ "c", "d" ] h = { a => 100, c => 300 } h[a] #=> 100 a[0] = "z" h[a] #=> nil h.rehash #=> {["z", "b"]=>100, ["c", "d"]=>300} h[a] #=> 100
Converts hsh to a nested array of [
key, value ]
arrays.
h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } h.to_a #=> [["c", 300], ["a", 100], ["d", 400]]
Returns a new hash consisting of entries for which the block returns false.
If no block is given, an enumerator is returned instead.
h = { "a" => 100, "b" => 200, "c" => 300 } h.reject {|k,v| k < "b"} #=> {"b" => 200, "c" => 300} h.reject {|k,v| v > 100} #=> {"a" => 100}
Equivalent to Hash#delete_if
, but returns nil
if no changes were made.
Replaces the contents of hsh with the contents of other_hash.
h = { "a" => 100, "b" => 200 } h.replace({ "c" => 300, "d" => 400 }) #=> {"c"=>300, "d"=>400}
Return the contents of this hash as a string.
h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } h.to_s #=> "{\"c\"=>300, \"a\"=>100, \"d\"=>400}"
Same as ENV#delete_if, but works on (and returns) a copy of the environment.
Equivalent to ENV#delete_if but returns nil
if no changes were made.
Returns an Enumerator
if no block was given.
Replaces the contents of the environment variables with the contents of hash
.
Re-hashing the environment variables does nothing. It is provided for compatibility with Hash
.
Converts the environment variables into an array of names and value arrays.
ENV.to_a # => [["TERM", "xterm-color"], ["SHELL", "/bin/bash"], ...]
Returns “ENV”
Creates a hash with a copy of the environment variables.
Returns “ARGF”.
Returns an integer representing the numeric file descriptor for the current file. Raises an ArgumentError
if there isn’t a current file.
ARGF.fileno #=> 3
Reads length bytes from ARGF
. The files named on the command line are concatenated and treated as a single file by this method, so when called without arguments the contents of this pseudo file are returned in their entirety.
length must be a non-negative integer or nil
.
If length is a positive integer, read
tries to read length bytes without any conversion (binary mode). It returns nil
if an EOF is encountered before anything can be read. Fewer than length bytes are returned if an EOF is encountered during the read. In the case of an integer length, the resulting string is always in ASCII-8BIT encoding.
If length is omitted or is nil
, it reads until EOF and the encoding conversion is applied, if applicable. A string is returned even if EOF is encountered before any data is read.
If length is zero, it returns an empty string (""
).
If the optional outbuf argument is present, it must reference a String, which will receive the data. The outbuf will contain only the received data after the method call even if it is not empty at the beginning.
For example:
$ echo "small" > small.txt $ echo "large" > large.txt $ ./glark.rb small.txt large.txt ARGF.read #=> "small\nlarge" ARGF.read(200) #=> "small\nlarge" ARGF.read(2) #=> "sm" ARGF.read(0) #=> ""
Note that this method behaves like the fread() function in C. This means it retries to invoke read(2) system calls to read data with the specified length. If you need the behavior like a single read(2) system call, consider ARGF#readpartial
or ARGF#read_nonblock
.
Reads at most maxlen bytes from the ARGF
stream.
If the optional outbuf argument is present, it must reference a String, which will receive the data. The outbuf will contain only the received data after the method call even if it is not empty at the beginning.
It raises EOFError
on end of ARGF
stream. Since ARGF
stream is a concatenation of multiple files, internally EOF is occur for each file. ARGF.readpartial
returns empty strings for EOFs except the last one and raises EOFError
for the last one.
Reads ARGF
‘s current file in its entirety, returning an Array
of its lines, one line per element. Lines are assumed to be separated by sep.
lines = ARGF.readlines lines[0] #=> "This is line one\n"
Reads ARGF
‘s current file in its entirety, returning an Array
of its lines, one line per element. Lines are assumed to be separated by sep.
lines = ARGF.readlines lines[0] #=> "This is line one\n"
Returns the next line from the current file in ARGF
.
By default lines are assumed to be separated by $/
; to use a different character as a separator, supply it as a String
for the sep argument.
The optional limit argument specifies how many characters of each line to return. By default all characters are returned.
An EOFError
is raised at the end of the file.
Reads the next character from ARGF
and returns it as a String
. Raises an EOFError
after the last character of the last file has been read.
For example:
$ echo "foo" > file $ ruby argf.rb file ARGF.readchar #=> "f" ARGF.readchar #=> "o" ARGF.readchar #=> "o" ARGF.readchar #=> "\n" ARGF.readchar #=> end of file reached (EOFError)
Reads the next 8-bit byte from ARGF
and returns it as an Integer
. Raises an EOFError
after the last byte of the last file has been read.
For example:
$ echo "foo" > file $ ruby argf.rb file ARGF.readbyte #=> 102 ARGF.readbyte #=> 111 ARGF.readbyte #=> 111 ARGF.readbyte #=> 10 ARGF.readbyte #=> end of file reached (EOFError)
Positions the current file to the beginning of input, resetting ARGF.lineno
to zero.
ARGF.readline #=> "This is line one\n" ARGF.rewind #=> 0 ARGF.lineno #=> 0 ARGF.readline #=> "This is line one\n"