Receives a message and return the message as a string and an address which the message come from.
maxlen is the maximum number of bytes to receive.
flags should be a bitwise OR of Socket::MSG_* constants.
ipaddr is same as IPSocket#{peeraddr,addr}.
u1 = UDPSocket.new u1.bind("127.0.0.1", 4913) u2 = UDPSocket.new u2.send "uuuu", 0, "127.0.0.1", 4913 p u1.recvfrom(10) #=> ["uuuu", ["AF_INET", 33230, "localhost", "127.0.0.1"]]
Lookups the IP address of host.
require 'socket' IPSocket.getaddress("localhost") #=> "127.0.0.1" IPSocket.getaddress("ip6-localhost") #=> "::1"
creates a listening socket bound to self.
returns the socket type as an integer.
Addrinfo.tcp("localhost", 80).protocol == Socket::IPPROTO_TCP #=> true
returns the socket address as packed struct sockaddr string.
Addrinfo.tcp("localhost", 80).to_sockaddr #=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
Listens for connections, using the specified int
as the backlog. A call to listen only applies if the socket
is of type SOCK_STREAM or SOCK_SEQPACKET.
backlog
- the maximum length of the queue for pending connections.
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.bind( sockaddr ) socket.listen( 5 )
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) socket.listen( 1 )
On unix based systems the above will work because a new sockaddr
struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket
is bound by calling bind before it can listen.
If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.
On unix-based based systems the following system exceptions may be raised if the call to listen fails:
Errno::EBADF - the socket argument is not a valid file descriptor
Errno::EDESTADDRREQ - the socket is not bound to a local address, and the protocol does not support listening on an unbound socket
Errno::EINVAL - the socket is already connected
Errno::ENOTSOCK - the socket argument does not refer to a socket
Errno::EOPNOTSUPP - the socket protocol does not support listen
Errno::EACCES - the calling process does not have appropriate privileges
Errno::EINVAL - the socket has been shut down
Errno::ENOBUFS - insufficient resources are available in the system to complete the call
On Windows systems the following system exceptions may be raised if the call to listen fails:
Errno::ENETDOWN - the network is down
Errno::EADDRINUSE - the socket’s local address is already in use. This usually occurs during the execution of bind but could be delayed if the call to bind was to a partially wildcard address (involving ADDR_ANY) and if a specific address needs to be committed at the time of the call to listen
Errno::EINPROGRESS - a Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function
Errno::EINVAL - the socket
has not been bound with a call to bind.
Errno::EISCONN - the socket
is already connected
Errno::EMFILE - no more socket descriptors are available
Errno::ENOBUFS - no buffer space is available
Errno::ENOTSOC - socket
is not a socket
Errno::EOPNOTSUPP - the referenced socket
is not a type that supports the listen method
listen manual pages on unix-based systems
listen function in Microsoft’s Winsock functions reference
Listens for connections, using the specified int
as the backlog. A call to listen only applies if the socket
is of type SOCK_STREAM or SOCK_SEQPACKET.
backlog
- the maximum length of the queue for pending connections.
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.bind( sockaddr ) socket.listen( 5 )
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) socket.listen( 1 )
On unix based systems the above will work because a new sockaddr
struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket
is bound by calling bind before it can listen.
If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.
On unix-based based systems the following system exceptions may be raised if the call to listen fails:
Errno::EBADF - the socket argument is not a valid file descriptor
Errno::EDESTADDRREQ - the socket is not bound to a local address, and the protocol does not support listening on an unbound socket
Errno::EINVAL - the socket is already connected
Errno::ENOTSOCK - the socket argument does not refer to a socket
Errno::EOPNOTSUPP - the socket protocol does not support listen
Errno::EACCES - the calling process does not have appropriate privileges
Errno::EINVAL - the socket has been shut down
Errno::ENOBUFS - insufficient resources are available in the system to complete the call
On Windows systems the following system exceptions may be raised if the call to listen fails:
Errno::ENETDOWN - the network is down
Errno::EADDRINUSE - the socket’s local address is already in use. This usually occurs during the execution of bind but could be delayed if the call to bind was to a partially wildcard address (involving ADDR_ANY) and if a specific address needs to be committed at the time of the call to listen
Errno::EINPROGRESS - a Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function
Errno::EINVAL - the socket
has not been bound with a call to bind.
Errno::EISCONN - the socket
is already connected
Errno::EMFILE - no more socket descriptors are available
Errno::ENOBUFS - no buffer space is available
Errno::ENOTSOC - socket
is not a socket
Errno::EOPNOTSUPP - the referenced socket
is not a type that supports the listen method
listen manual pages on unix-based systems
listen function in Microsoft’s Winsock functions reference
Lookups host information by hostname.
TCPSocket.gethostbyname("localhost") #=> ["localhost", ["hal"], 2, "127.0.0.1"]
Receives a message via unixsocket.
maxlen is the maximum number of bytes to receive.
flags should be a bitwise OR of Socket::MSG_* constants.
outbuf will contain only the received data after the method call even if it is not empty at the beginning.
s1 = Socket.new(:UNIX, :DGRAM, 0) s1_ai = Addrinfo.unix("/tmp/sock1") s1.bind(s1_ai) s2 = Socket.new(:UNIX, :DGRAM, 0) s2_ai = Addrinfo.unix("/tmp/sock2") s2.bind(s2_ai) s3 = UNIXSocket.for_fd(s2.fileno) s1.send "a", 0, s2_ai p s3.recvfrom(10) #=> ["a", ["AF_UNIX", "/tmp/sock1"]]
Reinitializes strio with the given other_StrIO or string and mode (see StringIO#new).
Returns underlying String object, the subject of IO
.
Changes underlying String object, the subject of IO
.
Positions strio to the beginning of input, resetting lineno
to zero.
See IO#read
.
Reset the scan pointer (index 0) and clear matching data.
Returns the string being scanned.
Changes the string being scanned to str
and resets the scanner. Returns str
.
Looks ahead to see if the pattern
exists anywhere in the string, without advancing the scan pointer. This predicates whether a scan_until
will return a value.
s = StringScanner.new('test string') s.exist? /s/ # -> 3 s.scan /test/ # -> "test" s.exist? /s/ # -> 2 s.exist? /e/ # -> nil
call-seq
WIN32OLE_METHOD#name
Returns the name of the method.
tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Workbook') method = WIN32OLE_METHOD.new(tobj, 'SaveAs') puts method.name # => SaveAs
Returns true if argument is return value.
tobj = WIN32OLE_TYPE.new('DirectX 7 for Visual Basic Type Library', 'DirectPlayLobbyConnection') method = WIN32OLE_METHOD.new(tobj, 'GetPlayerShortName') param = method.params[0] puts "#{param.name} #{param.retval?}" # => name true
Returns name.
tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Workbook') method = WIN32OLE_METHOD.new(tobj, 'SaveAs') param1 = method.params[0] puts param1.name # => Filename
Returns Ruby Hash
object which represents VT_RECORD variable. The keys of Hash
object are member names of VT_RECORD OLE variable and the values of Hash
object are values of VT_RECORD OLE variable.
If COM server in VB.NET ComServer project is the following:
Imports System.Runtime.InteropServices Public Class ComClass Public Structure Book <MarshalAs(UnmanagedType.BStr)> _ Public title As String Public cost As Integer End Structure Public Function getBook() As Book Dim book As New Book book.title = "The Ruby Book" book.cost = 20 Return book End Function End Class
then, the result of WIN32OLE_RECORD#to_h
is the following:
require 'win32ole' obj = WIN32OLE.new('ComServer.ComClass') book = obj.getBook book.to_h # => {"title"=>"The Ruby Book", "cost"=>20}
Returns OLE type name.
tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Application') puts tobj.name # => Application
Returns the type library name.
tlib = WIN32OLE_TYPELIB.new('Microsoft Excel 9.0 Object Library') name = tlib.name # -> 'Microsoft Excel 9.0 Object Library'