Results for: "strip"

Sets the (user) real, effective, and saved user IDs of the current process to rid, eid, and sid respectively. A value of -1 for any value means to leave that ID unchanged. Not available on all platforms.

Sets the (group) real, effective, and saved user IDs of the current process to rid, eid, and sid respectively. A value of -1 for any value means to leave that ID unchanged. Not available on all platforms.

Reset nil attributes to their default values to make the spec valid

Tries to convert obj into an array, using to_ary method. Returns the converted array or nil if obj cannot be converted for any reason. This method can be used to check if an argument is an array.

Array.try_convert([1])   #=> [1]
Array.try_convert("1")   #=> nil

if tmp = Array.try_convert(arg)
  # the argument is an array
elsif tmp = String.try_convert(arg)
  # the argument is a string
end

Returns the list of private methods accessible to obj. If the all parameter is set to false, only those methods in the receiver will be listed.

Returns true if obj is an instance of the given class. See also Object#kind_of?.

class A;     end
class B < A; end
class C < B; end

b = B.new
b.instance_of? A   #=> false
b.instance_of? B   #=> true
b.instance_of? C   #=> false

Returns the factorization of self.

See Prime#prime_division for more details.

Iterates the given block over all prime numbers.

See Prime#each for more details.

Try to convert obj into a String, using to_str method. Returns converted string or nil if obj cannot be converted for any reason.

String.try_convert("str")     #=> "str"
String.try_convert(/re/)      #=> nil

Returns true if str starts with one of the prefixes given.

"hello".start_with?("hell")               #=> true

# returns true if one of the prefixes matches.
"hello".start_with?("heaven", "hell")     #=> true
"hello".start_with?("heaven", "paradise") #=> false

Performs String#tr_s processing on str in place, returning str, or nil if no changes were made.

Returns true if the named file is writable by the real user and group id of this process. See access(3)

If file_name is writable by others, returns an integer representing the file permission bits of file_name. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix systems, see stat(2).

file_name can be an IO object.

File.world_writable?("/tmp")                  #=> 511
m = File.world_writable?("/tmp")
sprintf("%o", m)                              #=> "777"

Returns the list of available encoding names.

Encoding.name_list
#=> ["US-ASCII", "ASCII-8BIT", "UTF-8",
      "ISO-8859-1", "Shift_JIS", "EUC-JP",
      "Windows-31J",
      "BINARY", "CP932", "eucJP"]

Returns any backtrace associated with the exception. This method is similar to Exception#backtrace, but the backtrace is an array of Thread::Backtrace::Location.

Now, this method is not affected by Exception#set_backtrace().

Sets the backtrace information associated with exc. The backtrace must be an array of String objects or a single String in the format described in Exception#backtrace.

Return a list of the local variable names defined where this NameError exception was raised.

Internal use only.

No documentation available

Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr:name” on each name in turn. String arguments are converted to symbols.

Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (@name) and a corresponding access method to read it. Also creates a method called name= to set the attribute. String arguments are converted to symbols.

module Mod
  attr_accessor(:one, :two)
end
Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false, the methods of any ancestors are not included.

module A
  def method1()  end
end
class B
  include A
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods(false)                   #=> [:method1]
B.instance_methods(false)                   #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false)                   #=> [:method3]
C.instance_methods.include?(:method2)       #=> true

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_get 'foobar' #=> NameError: wrong constant name foobar

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar

Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.

Search took: 3ms  ·  Total Results: 1729