Results for: "OptionParser"

No documentation available

Arrays are ordered, integer-indexed collections of any object.

Array indexing starts at 0, as in C or Java. A negative index is assumed to be relative to the end of the array—that is, an index of -1 indicates the last element of the array, -2 is the next to last element in the array, and so on.

Creating Arrays

A new array can be created by using the literal constructor []. Arrays can contain different types of objects. For example, the array below contains an Integer, a String and a Float:

ary = [1, "two", 3.0] #=> [1, "two", 3.0]

An array can also be created by explicitly calling Array.new with zero, one (the initial size of the Array) or two arguments (the initial size and a default object).

ary = Array.new    #=> []
Array.new(3)       #=> [nil, nil, nil]
Array.new(3, true) #=> [true, true, true]

Note that the second argument populates the array with references to the same object. Therefore, it is only recommended in cases when you need to instantiate arrays with natively immutable objects such as Symbols, numbers, true or false.

To create an array with separate objects a block can be passed instead. This method is safe to use with mutable objects such as hashes, strings or other arrays:

Array.new(4) { Hash.new }  #=> [{}, {}, {}, {}]
Array.new(4) {|i| i.to_s } #=> ["0", "1", "2", "3"]

This is also a quick way to build up multi-dimensional arrays:

empty_table = Array.new(3) { Array.new(3) }
#=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]

An array can also be created by using the Array() method, provided by Kernel, which tries to call to_ary, then to_a on its argument.

Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]]

Example Usage

In addition to the methods it mixes in through the Enumerable module, the Array class has proprietary methods for accessing, searching and otherwise manipulating arrays.

Some of the more common ones are illustrated below.

Accessing Elements

Elements in an array can be retrieved using the Array#[] method. It can take a single integer argument (a numeric index), a pair of arguments (start and length) or a range. Negative indices start counting from the end, with -1 being the last element.

arr = [1, 2, 3, 4, 5, 6]
arr[2]    #=> 3
arr[100]  #=> nil
arr[-3]   #=> 4
arr[2, 3] #=> [3, 4, 5]
arr[1..4] #=> [2, 3, 4, 5]
arr[1..-3] #=> [2, 3, 4]

Another way to access a particular array element is by using the at method

arr.at(0) #=> 1

The slice method works in an identical manner to Array#[].

To raise an error for indices outside of the array bounds or else to provide a default value when that happens, you can use fetch.

arr = ['a', 'b', 'c', 'd', 'e', 'f']
arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
arr.fetch(100, "oops") #=> "oops"

The special methods first and last will return the first and last elements of an array, respectively.

arr.first #=> 1
arr.last  #=> 6

To return the first n elements of an array, use take

arr.take(3) #=> [1, 2, 3]

drop does the opposite of take, by returning the elements after n elements have been dropped:

arr.drop(3) #=> [4, 5, 6]

Obtaining Information about an Array

Arrays keep track of their own length at all times. To query an array about the number of elements it contains, use length, count or size.

browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
browsers.length #=> 5
browsers.count #=> 5

To check whether an array contains any elements at all

browsers.empty? #=> false

To check whether a particular item is included in the array

browsers.include?('Konqueror') #=> false

Adding Items to Arrays

Items can be added to the end of an array by using either push or <<

arr = [1, 2, 3, 4]
arr.push(5) #=> [1, 2, 3, 4, 5]
arr << 6    #=> [1, 2, 3, 4, 5, 6]

unshift will add a new item to the beginning of an array.

arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]

With insert you can add a new element to an array at any position.

arr.insert(3, 'apple')  #=> [0, 1, 2, 'apple', 3, 4, 5, 6]

Using the insert method, you can also insert multiple values at once:

arr.insert(3, 'orange', 'pear', 'grapefruit')
#=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]

Removing Items from an Array

The method pop removes the last element in an array and returns it:

arr =  [1, 2, 3, 4, 5, 6]
arr.pop #=> 6
arr #=> [1, 2, 3, 4, 5]

To retrieve and at the same time remove the first item, use shift:

arr.shift #=> 1
arr #=> [2, 3, 4, 5]

To delete an element at a particular index:

arr.delete_at(2) #=> 4
arr #=> [2, 3, 5]

To delete a particular element anywhere in an array, use delete:

arr = [1, 2, 2, 3]
arr.delete(2) #=> 2
arr #=> [1,3]

A useful method if you need to remove nil values from an array is compact:

arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact  #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, 'bar', 7, 'baz']

Another common need is to remove duplicate elements from an array.

It has the non-destructive uniq, and destructive method uniq!

arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]

Iterating over Arrays

Like all classes that include the Enumerable module, Array has an each method, which defines what elements should be iterated over and how. In case of Array’s each, all elements in the Array instance are yielded to the supplied block in sequence.

Note that this operation leaves the array unchanged.

arr = [1, 2, 3, 4, 5]
arr.each { |a| print a -= 10, " " }
# prints: -9 -8 -7 -6 -5
#=> [1, 2, 3, 4, 5]

Another sometimes useful iterator is reverse_each which will iterate over the elements in the array in reverse order.

words = %w[first second third fourth fifth sixth]
str = ""
words.reverse_each { |word| str += "#{word} " }
p str #=> "sixth fifth fourth third second first "

The map method can be used to create a new array based on the original array, but with the values modified by the supplied block:

arr.map { |a| 2*a }   #=> [2, 4, 6, 8, 10]
arr                   #=> [1, 2, 3, 4, 5]
arr.map! { |a| a**2 } #=> [1, 4, 9, 16, 25]
arr                   #=> [1, 4, 9, 16, 25]

Selecting Items from an Array

Elements can be selected from an array according to criteria defined in a block. The selection can happen in a destructive or a non-destructive manner. While the destructive operations will modify the array they were called on, the non-destructive methods usually return a new array with the selected elements, but leave the original array unchanged.

Non-destructive Selection

arr = [1, 2, 3, 4, 5, 6]
arr.select { |a| a > 3 }     #=> [4, 5, 6]
arr.reject { |a| a < 3 }     #=> [3, 4, 5, 6]
arr.drop_while { |a| a < 4 } #=> [4, 5, 6]
arr                          #=> [1, 2, 3, 4, 5, 6]

Destructive Selection

select! and reject! are the corresponding destructive methods to select and reject

Similar to select vs. reject, delete_if and keep_if have the exact opposite result when supplied with the same block:

arr.delete_if { |a| a < 4 } #=> [4, 5, 6]
arr                         #=> [4, 5, 6]

arr = [1, 2, 3, 4, 5, 6]
arr.keep_if { |a| a < 4 } #=> [1, 2, 3]
arr                       #=> [1, 2, 3]

Add double dispatch to Integer

When mathn is required, Integer’s division is enhanced to return more precise values from mathematical expressions.

2/3*3  # => 0
require 'mathn'
2/3*3  # => 2

(2**72) / ((2**70) * 3)  # => 4/3

Holds Integer values. You cannot add a singleton method to an Integer. Any attempt to add a singleton method to an Integer object will raise a TypeError.

Numeric is the class from which all higher-level numeric classes should inherit.

Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as Integer are implemented as immediates, which means that each Integer is a single immutable object which is always passed by value.

a = 1
puts 1.object_id == a.object_id   #=> true

There can only ever be one instance of the integer 1, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.

Integer.new(1)                   #=> NoMethodError: undefined method `new' for Integer:Class
1.dup                            #=> 1
1.object_id == 1.dup.object_id   #=> true

For this reason, Numeric should be used when defining other numeric classes.

Classes which inherit from Numeric must implement coerce, which returns a two-member Array containing an object that has been coerced into an instance of the new class and self (see coerce).

Inheriting classes should also implement arithmetic operator methods (+, -, * and /) and the <=> operator (see Comparable). These methods may rely on coerce to ensure interoperability with instances of other numeric classes.

class Tally < Numeric
  def initialize(string)
    @string = string
  end

  def to_s
    @string
  end

  def to_i
    @string.size
  end

  def coerce(other)
    [self.class.new('|' * other.to_i), self]
  end

  def <=>(other)
    to_i <=> other.to_i
  end

  def +(other)
    self.class.new('|' * (to_i + other.to_i))
  end

  def -(other)
    self.class.new('|' * (to_i - other.to_i))
  end

  def *(other)
    self.class.new('|' * (to_i * other.to_i))
  end

  def /(other)
    self.class.new('|' * (to_i / other.to_i))
  end
end

tally = Tally.new('||')
puts tally * 2            #=> "||||"
puts tally > 1            #=> true

Fibers are primitives for implementing light weight cooperative concurrency in Ruby. Basically they are a means of creating code blocks that can be paused and resumed, much like threads. The main difference is that they are never preempted and that the scheduling must be done by the programmer and not the VM.

As opposed to other stackless light weight concurrency models, each fiber comes with a stack. This enables the fiber to be paused from deeply nested function calls within the fiber block. See the ruby(1) manpage to configure the size of the fiber stack(s).

When a fiber is created it will not run automatically. Rather it must be explicitly asked to run using the Fiber#resume method. The code running inside the fiber can give up control by calling Fiber.yield in which case it yields control back to caller (the caller of the Fiber#resume).

Upon yielding or termination the Fiber returns the value of the last executed expression

For instance:

fiber = Fiber.new do
  Fiber.yield 1
  2
end

puts fiber.resume
puts fiber.resume
puts fiber.resume

produces

1
2
FiberError: dead fiber called

The Fiber#resume method accepts an arbitrary number of parameters, if it is the first call to resume then they will be passed as block arguments. Otherwise they will be the return value of the call to Fiber.yield

Example:

fiber = Fiber.new do |first|
  second = Fiber.yield first + 2
end

puts fiber.resume 10
puts fiber.resume 14
puts fiber.resume 18

produces

12
14
FiberError: dead fiber called

A class which allows both internal and external iteration.

An Enumerator can be created by the following methods.

Most methods have two forms: a block form where the contents are evaluated for each item in the enumeration, and a non-block form which returns a new Enumerator wrapping the iteration.

enumerator = %w(one two three).each
puts enumerator.class # => Enumerator

enumerator.each_with_object("foo") do |item, obj|
  puts "#{obj}: #{item}"
end

# foo: one
# foo: two
# foo: three

enum_with_obj = enumerator.each_with_object("foo")
puts enum_with_obj.class # => Enumerator

enum_with_obj.each do |item, obj|
  puts "#{obj}: #{item}"
end

# foo: one
# foo: two
# foo: three

This allows you to chain Enumerators together. For example, you can map a list’s elements to strings containing the index and the element as a string via:

puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" }
# => ["0:foo", "1:bar", "2:baz"]

An Enumerator can also be used as an external iterator. For example, Enumerator#next returns the next value of the iterator or raises StopIteration if the Enumerator is at the end.

e = [1,2,3].each   # returns an enumerator object.
puts e.next   # => 1
puts e.next   # => 2
puts e.next   # => 3
puts e.next   # raises StopIteration

You can use this to implement an internal iterator as follows:

def ext_each(e)
  while true
    begin
      vs = e.next_values
    rescue StopIteration
      return $!.result
    end
    y = yield(*vs)
    e.feed y
  end
end

o = Object.new

def o.each
  puts yield
  puts yield(1)
  puts yield(1, 2)
  3
end

# use o.each as an internal iterator directly.
puts o.each {|*x| puts x; [:b, *x] }
# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3

# convert o.each to an external iterator for
# implementing an internal iterator.
puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] }
# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3

Raised when encountering an object that is not of the expected type.

[1, 2, 3].first("two")

raises the exception:

TypeError: no implicit conversion of String into Integer

Raised when the given index is invalid.

a = [:foo, :bar]
a.fetch(0)   #=> :foo
a[4]         #=> nil
a.fetch(4)   #=> IndexError: index 4 outside of array bounds: -2...2

Raised when the specified key is not found. It is a subclass of IndexError.

h = {"foo" => :bar}
h.fetch("foo") #=> :bar
h.fetch("baz") #=> KeyError: key not found: "baz"

Raised when a given numerical value is out of range.

[1, 2, 3].drop(1 << 100)

raises the exception:

RangeError: bignum too big to convert into `long'

Raised when encountering Ruby code with an invalid syntax.

eval("1+1=2")

raises the exception:

SyntaxError: (eval):1: syntax error, unexpected '=', expecting $end

Raised when a file required (a Ruby script, extension library, …) fails to load.

require 'this/file/does/not/exist'

raises the exception:

LoadError: no such file to load -- this/file/does/not/exist

Raised when a given name is invalid or undefined.

puts foo

raises the exception:

NameError: undefined local variable or method `foo' for main:Object

Since constant names must start with a capital:

Integer.const_set :answer, 42

raises the exception:

NameError: wrong constant name answer

Raised when a method is called on a receiver which doesn’t have it defined and also fails to respond with method_missing.

"hello".to_ary

raises the exception:

NoMethodError: undefined method `to_ary' for "hello":String

Raised when memory allocation fails.

EncodingError is the base class for encoding errors.

SystemCallError is the base class for all low-level platform-dependent errors.

The errors available on the current platform are subclasses of SystemCallError and are defined in the Errno module.

File.open("does/not/exist")

raises the exception:

Errno::ENOENT: No such file or directory - does/not/exist

DateTime

A subclass of Date that easily handles date, hour, minute, second, and offset.

DateTime does not consider any leap seconds, does not track any summer time rules.

A DateTime object is created with DateTime::new, DateTime::jd, DateTime::ordinal, DateTime::commercial, DateTime::parse, DateTime::strptime, DateTime::now, Time#to_datetime, etc.

require 'date'

DateTime.new(2001,2,3,4,5,6)
                    #=> #<DateTime: 2001-02-03T04:05:06+00:00 ...>

The last element of day, hour, minute, or second can be a fractional number. The fractional number’s precision is assumed at most nanosecond.

DateTime.new(2001,2,3.5)
                    #=> #<DateTime: 2001-02-03T12:00:00+00:00 ...>

An optional argument, the offset, indicates the difference between the local time and UTC. For example, Rational(3,24) represents ahead of 3 hours of UTC, Rational(-5,24) represents behind of 5 hours of UTC. The offset should be -1 to +1, and its precision is assumed at most second. The default value is zero (equals to UTC).

DateTime.new(2001,2,3,4,5,6,Rational(3,24))
                    #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>

The offset also accepts string form:

DateTime.new(2001,2,3,4,5,6,'+03:00')
                    #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>

An optional argument, the day of calendar reform (start), denotes a Julian day number, which should be 2298874 to 2426355 or negative/positive infinity. The default value is Date::ITALY (2299161=1582-10-15).

A DateTime object has various methods. See each reference.

d = DateTime.parse('3rd Feb 2001 04:05:06+03:30')
                    #=> #<DateTime: 2001-02-03T04:05:06+03:30 ...>
d.hour              #=> 4
d.min               #=> 5
d.sec               #=> 6
d.offset            #=> (7/48)
d.zone              #=> "+03:30"
d += Rational('1.5')
                    #=> #<DateTime: 2001-02-04%16:05:06+03:30 ...>
d = d.new_offset('+09:00')
                    #=> #<DateTime: 2001-02-04%21:35:06+09:00 ...>
d.strftime('%I:%M:%S %p')
                    #=> "09:35:06 PM"
d > DateTime.new(1999)
                    #=> true

When should you use DateTime and when should you use Time?

It’s a common misconception that William Shakespeare and Miguel de Cervantes died on the same day in history - so much so that UNESCO named April 23 as World Book Day because of this fact. However, because England hadn’t yet adopted the Gregorian Calendar Reform (and wouldn’t until 1752) their deaths are actually 10 days apart. Since Ruby’s Time class implements a proleptic Gregorian calendar and has no concept of calendar reform there’s no way to express this with Time objects. This is where DateTime steps in:

shakespeare = DateTime.iso8601('1616-04-23', Date::ENGLAND)
 #=> Tue, 23 Apr 1616 00:00:00 +0000
cervantes = DateTime.iso8601('1616-04-23', Date::ITALY)
 #=> Sat, 23 Apr 1616 00:00:00 +0000

Already you can see something is weird - the days of the week are different. Taking this further:

cervantes == shakespeare
 #=> false
(shakespeare - cervantes).to_i
 #=> 10

This shows that in fact they died 10 days apart (in reality 11 days since Cervantes died a day earlier but was buried on the 23rd). We can see the actual date of Shakespeare’s death by using the gregorian method to convert it:

shakespeare.gregorian
 #=> Tue, 03 May 1616 00:00:00 +0000

So there’s an argument that all the celebrations that take place on the 23rd April in Stratford-upon-Avon are actually the wrong date since England is now using the Gregorian calendar. You can see why when we transition across the reform date boundary:

# start off with the anniversary of Shakespeare's birth in 1751
shakespeare = DateTime.iso8601('1751-04-23', Date::ENGLAND)
 #=> Tue, 23 Apr 1751 00:00:00 +0000

# add 366 days since 1752 is a leap year and April 23 is after February 29
shakespeare + 366
 #=> Thu, 23 Apr 1752 00:00:00 +0000

# add another 365 days to take us to the anniversary in 1753
shakespeare + 366 + 365
 #=> Fri, 04 May 1753 00:00:00 +0000

As you can see, if we’re accurately tracking the number of solar years since Shakespeare’s birthday then the correct anniversary date would be the 4th May and not the 23rd April.

So when should you use DateTime in Ruby and when should you use Time? Almost certainly you’ll want to use Time since your app is probably dealing with current dates and times. However, if you need to deal with dates and times in a historical context you’ll want to use DateTime to avoid making the same mistakes as UNESCO. If you also have to deal with timezones then best of luck - just bear in mind that you’ll probably be dealing with local solar times, since it wasn’t until the 19th century that the introduction of the railways necessitated the need for Standard Time and eventually timezones.

time.rb

When ‘time’ is required, Time is extended with additional methods for parsing and converting Times.

Features

This library extends the Time class with the following conversions between date strings and Time objects:

Examples

All examples assume you have loaded Time with:

require 'time'

All of these examples were done using the EST timezone which is GMT-5.

Converting to a String

t = Time.now
t.iso8601  # => "2011-10-05T22:26:12-04:00"
t.rfc2822  # => "Wed, 05 Oct 2011 22:26:12 -0400"
t.httpdate # => "Thu, 06 Oct 2011 02:26:12 GMT"

Time.parse

parse takes a string representation of a Time and attempts to parse it using a heuristic.

Time.parse("2010-10-31") #=> 2010-10-31 00:00:00 -0500

Any missing pieces of the date are inferred based on the current date.

# assuming the current date is "2011-10-31"
Time.parse("12:00") #=> 2011-10-31 12:00:00 -0500

We can change the date used to infer our missing elements by passing a second object that responds to mon, day and year, such as Date, Time or DateTime. We can also use our own object.

class MyDate
  attr_reader :mon, :day, :year

  def initialize(mon, day, year)
    @mon, @day, @year = mon, day, year
  end
end

d  = Date.parse("2010-10-28")
t  = Time.parse("2010-10-29")
dt = DateTime.parse("2010-10-30")
md = MyDate.new(10,31,2010)

Time.parse("12:00", d)  #=> 2010-10-28 12:00:00 -0500
Time.parse("12:00", t)  #=> 2010-10-29 12:00:00 -0500
Time.parse("12:00", dt) #=> 2010-10-30 12:00:00 -0500
Time.parse("12:00", md) #=> 2010-10-31 12:00:00 -0500

parse also accepts an optional block. You can use this block to specify how to handle the year component of the date. This is specifically designed for handling two digit years. For example, if you wanted to treat all two digit years prior to 70 as the year 2000+ you could write this:

Time.parse("01-10-31") {|year| year + (year < 70 ? 2000 : 1900)}
#=> 2001-10-31 00:00:00 -0500
Time.parse("70-10-31") {|year| year + (year < 70 ? 2000 : 1900)}
#=> 1970-10-31 00:00:00 -0500

Time.strptime

strptime works similar to parse except that instead of using a heuristic to detect the format of the input string, you provide a second argument that describes the format of the string. For example:

Time.strptime("2000-10-31", "%Y-%m-%d") #=> 2000-10-31 00:00:00 -0500

Time is an abstraction of dates and times. Time is stored internally as the number of seconds with fraction since the Epoch, January 1, 1970 00:00 UTC. Also see the library module Date. The Time class treats GMT (Greenwich Mean Time) and UTC (Coordinated Universal Time) as equivalent. GMT is the older way of referring to these baseline times but persists in the names of calls on POSIX systems.

All times may have fraction. Be aware of this fact when comparing times with each other – times that are apparently equal when displayed may be different when compared.

Since Ruby 1.9.2, Time implementation uses a signed 63 bit integer, Bignum or Rational. The integer is a number of nanoseconds since the Epoch which can represent 1823-11-12 to 2116-02-20. When Bignum or Rational is used (before 1823, after 2116, under nanosecond), Time works slower as when integer is used.

Examples

All of these examples were done using the EST timezone which is GMT-5.

Creating a new Time instance

You can create a new instance of Time with Time::new. This will use the current system time. Time::now is an alias for this. You can also pass parts of the time to Time::new such as year, month, minute, etc. When you want to construct a time this way you must pass at least a year. If you pass the year with nothing else time will default to January 1 of that year at 00:00:00 with the current system timezone. Here are some examples:

Time.new(2002)         #=> 2002-01-01 00:00:00 -0500
Time.new(2002, 10)     #=> 2002-10-01 00:00:00 -0500
Time.new(2002, 10, 31) #=> 2002-10-31 00:00:00 -0500
Time.new(2002, 10, 31, 2, 2, 2, "+02:00") #=> 2002-10-31 02:02:02 +0200

You can also use gm, local and utc to infer GMT, local and UTC timezones instead of using the current system setting.

You can also create a new time using Time::at which takes the number of seconds (or fraction of seconds) since the Unix Epoch.

Time.at(628232400) #=> 1989-11-28 00:00:00 -0500

Working with an instance of Time

Once you have an instance of Time there is a multitude of things you can do with it. Below are some examples. For all of the following examples, we will work on the assumption that you have done the following:

t = Time.new(1993, 02, 24, 12, 0, 0, "+09:00")

Was that a monday?

t.monday? #=> false

What year was that again?

t.year #=> 1993

Was it daylight savings at the time?

t.dst? #=> false

What’s the day a year later?

t + (60*60*24*365) #=> 1994-02-24 12:00:00 +0900

How many seconds was that since the Unix Epoch?

t.to_i #=> 730522800

You can also do standard functions like compare two times.

t1 = Time.new(2010)
t2 = Time.new(2011)

t1 == t2 #=> false
t1 == t1 #=> true
t1 <  t2 #=> true
t1 >  t2 #=> false

Time.new(2010,10,31).between?(t1, t2) #=> true

Exception class used to return errors from the dbm library.

IO

Expect library adds the IO instance method expect, which does similar act to tcl’s expect extension.

In order to use this method, you must require expect:

require 'expect'

Please see expect for usage.

The IO class is the basis for all input and output in Ruby. An I/O stream may be duplexed (that is, bidirectional), and so may use more than one native operating system stream.

Many of the examples in this section use the File class, the only standard subclass of IO. The two classes are closely associated. Like the File class, the Socket library subclasses from IO (such as TCPSocket or UDPSocket).

The Kernel#open method can create an IO (or File) object for these types of arguments:

The IO may be opened with different file modes (read-only, write-only) and encodings for proper conversion. See IO.new for these options. See Kernel#open for details of the various command formats described above.

IO.popen, the Open3 library, or Process#spawn may also be used to communicate with subprocesses through an IO.

Ruby will convert pathnames between different operating system conventions if possible. For instance, on a Windows system the filename "/gumby/ruby/test.rb" will be opened as "\gumby\ruby\test.rb". When specifying a Windows-style filename in a Ruby string, remember to escape the backslashes:

"C:\\gumby\\ruby\\test.rb"

Our examples here will use the Unix-style forward slashes; File::ALT_SEPARATOR can be used to get the platform-specific separator character.

The global constant ARGF (also accessible as $<) provides an IO-like stream which allows access to all files mentioned on the command line (or STDIN if no files are mentioned). ARGF#path and its alias ARGF#filename are provided to access the name of the file currently being read.

io/console

The io/console extension provides methods for interacting with the console. The console can be accessed from IO.console or the standard input/output/error IO objects.

Requiring io/console adds the following methods:

Example:

require 'io/console'
rows, columns = $stdout.winsize
puts "Your screen is #{columns} wide and #{rows} tall"
No documentation available
No documentation available

An OpenStruct is a data structure, similar to a Hash, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.

Examples

require "ostruct"

person = OpenStruct.new
person.name = "John Smith"
person.age  = 70

person.name      # => "John Smith"
person.age       # => 70
person.address   # => nil

An OpenStruct employs a Hash internally to store the attributes and values and can even be initialized with one:

australia = OpenStruct.new(:country => "Australia", :capital => "Canberra")
  # => #<OpenStruct country="Australia", capital="Canberra">

Hash keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*) will not be immediately available on the OpenStruct object as a method for retrieval or assignment, but can still be reached through the Object#send method.

measurements = OpenStruct.new("length (in inches)" => 24)
measurements.send("length (in inches)")   # => 24

message = OpenStruct.new(:queued? => true)
message.queued?                           # => true
message.send("queued?=", false)
message.queued?                           # => false

Removing the presence of an attribute requires the execution of the delete_field method as setting the property value to nil will not remove the attribute.

first_pet  = OpenStruct.new(:name => "Rowdy", :owner => "John Smith")
second_pet = OpenStruct.new(:name => "Rowdy")

first_pet.owner = nil
first_pet                 # => #<OpenStruct name="Rowdy", owner=nil>
first_pet == second_pet   # => false

first_pet.delete_field(:owner)
first_pet                 # => #<OpenStruct name="Rowdy">
first_pet == second_pet   # => true

Implementation

An OpenStruct utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.

This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash or a Struct.

Pathname represents the name of a file or directory on the filesystem, but not the file itself.

The pathname depends on the Operating System: Unix, Windows, etc. This library works with pathnames of local OS, however non-Unix pathnames are supported experimentally.

A Pathname can be relative or absolute. It’s not until you try to reference the file that it even matters whether the file exists or not.

Pathname is immutable. It has no method for destructive update.

The goal of this class is to manipulate file path information in a neater way than standard Ruby provides. The examples below demonstrate the difference.

All functionality from File, FileTest, and some from Dir and FileUtils is included, in an unsurprising way. It is essentially a facade for all of these, and more.

Examples

Example 1: Using Pathname

require 'pathname'
pn = Pathname.new("/usr/bin/ruby")
size = pn.size              # 27662
isdir = pn.directory?       # false
dir  = pn.dirname           # Pathname:/usr/bin
base = pn.basename          # Pathname:ruby
dir, base = pn.split        # [Pathname:/usr/bin, Pathname:ruby]
data = pn.read
pn.open { |f| _ }
pn.each_line { |line| _ }

Example 2: Using standard Ruby

pn = "/usr/bin/ruby"
size = File.size(pn)        # 27662
isdir = File.directory?(pn) # false
dir  = File.dirname(pn)     # "/usr/bin"
base = File.basename(pn)    # "ruby"
dir, base = File.split(pn)  # ["/usr/bin", "ruby"]
data = File.read(pn)
File.open(pn) { |f| _ }
File.foreach(pn) { |line| _ }

Example 3: Special features

p1 = Pathname.new("/usr/lib")   # Pathname:/usr/lib
p2 = p1 + "ruby/1.8"            # Pathname:/usr/lib/ruby/1.8
p3 = p1.parent                  # Pathname:/usr
p4 = p2.relative_path_from(p3)  # Pathname:lib/ruby/1.8
pwd = Pathname.pwd              # Pathname:/home/gavin
pwd.absolute?                   # true
p5 = Pathname.new "."           # Pathname:.
p5 = p5 + "music/../articles"   # Pathname:music/../articles
p5.cleanpath                    # Pathname:articles
p5.realpath                     # Pathname:/home/gavin/articles
p5.children                     # [Pathname:/home/gavin/articles/linux, ...]

Breakdown of functionality

Core methods

These methods are effectively manipulating a String, because that’s all a path is. None of these access the file system except for mountpoint?, children, each_child, realdirpath and realpath.

File status predicate methods

These methods are a facade for FileTest:

File property and manipulation methods

These methods are a facade for File:

Directory methods

These methods are a facade for Dir:

IO

These methods are a facade for IO:

Utilities

These methods are a mixture of Find, FileUtils, and others:

Method documentation

As the above section shows, most of the methods in Pathname are facades. The documentation for these methods generally just says, for instance, “See FileTest.writable?”, as you should be familiar with the original method anyway, and its documentation (e.g. through ri) will contain more information. In some cases, a brief description will follow.

Search took: 41ms  ·  Total Results: 4130