This class is used as a return value from ObjectSpace::reachable_objects_from
.
When ObjectSpace::reachable_objects_from
returns an object with references to an internal object, an instance of this class is returned.
You can use the type
method to check the type of the internal object.
OpenSSL::Digest
allows you to compute message digests (sometimes interchangeably called “hashes”) of arbitrary data that are cryptographically secure, i.e. a Digest
implements a secure one-way function.
One-way functions offer some useful properties. E.g. given two distinct inputs the probability that both yield the same output is highly unlikely. Combined with the fact that every message digest algorithm has a fixed-length output of just a few bytes, digests are often used to create unique identifiers for arbitrary data. A common example is the creation of a unique id for binary documents that are stored in a database.
Another useful characteristic of one-way functions (and thus the name) is that given a digest there is no indication about the original data that produced it, i.e. the only way to identify the original input is to “brute-force” through every possible combination of inputs.
These characteristics make one-way functions also ideal companions for public key signature algorithms: instead of signing an entire document, first a hash of the document is produced with a considerably faster message digest algorithm and only the few bytes of its output need to be signed using the slower public key algorithm. To validate the integrity of a signed document, it suffices to re-compute the hash and verify that it is equal to that in the signature.
Among the supported message digest algorithms are:
SHA, SHA1, SHA224, SHA256, SHA384 and SHA512
MD2, MD4, MDC2 and MD5
RIPEMD160
DSS, DSS1 (Pseudo algorithms to be used for DSA signatures. DSS is equal to SHA and DSS1 is equal to SHA1)
For each of these algorithms, there is a sub-class of Digest
that can be instantiated as simply as e.g.
digest = OpenSSL::Digest::SHA1.new
Digest
class and sn/ln The sn (short names) and ln (long names) are defined in <openssl/object.h> and <openssl/obj_mac.h>. They are textual representations of ASN.1 OBJECT IDENTIFIERs. Each supported digest algorithm has an OBJECT IDENTIFIER associated to it and those again have short/long names assigned to them. E.g. the OBJECT IDENTIFIER for SHA-1 is 1.3.14.3.2.26 and its sn is “SHA1” and its ln is “sha1”.
sn: MD2
ln: md2
sn: MD4
ln: md4
sn: MD5
ln: md5
sn: SHA
ln: SHA
sn: SHA1
ln: sha1
sn: SHA224
ln: sha224
sn: SHA256
ln: sha256
sn: SHA384
ln: sha384
sn: SHA512
ln: sha512
“Breaking” a message digest algorithm means defying its one-way function characteristics, i.e. producing a collision or finding a way to get to the original data by means that are more efficient than brute-forcing etc. Most of the supported digest algorithms can be considered broken in this sense, even the very popular MD5 and SHA1 algorithms. Should security be your highest concern, then you should probably rely on SHA224, SHA256, SHA384 or SHA512.
data = File.read('document') sha256 = OpenSSL::Digest::SHA256.new digest = sha256.digest(data)
data1 = File.read('file1') data2 = File.read('file2') data3 = File.read('file3') sha256 = OpenSSL::Digest::SHA256.new sha256 << data1 sha256 << data2 sha256 << data3 digest = sha256.digest
Digest
instance data1 = File.read('file1') sha256 = OpenSSL::Digest::SHA256.new digest1 = sha256.digest(data1) data2 = File.read('file2') sha256.reset digest2 = sha256.digest(data2)
This class works in conjunction with Psych::Parser
to build an in-memory parse tree that represents a YAML document.
parser = Psych::Parser.new Psych::TreeBuilder.new parser.parse('--- foo') tree = parser.handler.root
See Psych::Handler
for documentation on the event methods used in this class.
Zlib:Inflate is the class for decompressing compressed data. Unlike Zlib::Deflate
, an instance of this class is not able to duplicate (clone, dup) itself.
Zlib::GzipWriter
is a class for writing gzipped files. GzipWriter
should be used with an instance of IO
, or IO-like, object.
Following two example generate the same result.
Zlib::GzipWriter.open('hoge.gz') do |gz| gz.write 'jugemu jugemu gokou no surikire...' end File.open('hoge.gz', 'w') do |f| gz = Zlib::GzipWriter.new(f) gz.write 'jugemu jugemu gokou no surikire...' gz.close end
To make like gzip(1) does, run following:
orig = 'hoge.txt' Zlib::GzipWriter.open('hoge.gz') do |gz| gz.mtime = File.mtime(orig) gz.orig_name = orig gz.write IO.binread(orig) end
NOTE: Due to the limitation of Ruby’s finalizer, you must explicitly close GzipWriter
objects by Zlib::GzipWriter#close
etc. Otherwise, GzipWriter
will be not able to write the gzip footer and will generate a broken gzip file.
Objects of class File::Stat
encapsulate common status information for File
objects. The information is recorded at the moment the File::Stat
object is created; changes made to the file after that point will not be reflected. File::Stat
objects are returned by IO#stat
, File::stat
, File#lstat
, and File::lstat
. Many of these methods return platform-specific values, and not all values are meaningful on all systems. See also Kernel#test
.
An entry in an ACL
Error raised by the DRbProtocol
module when it cannot find any protocol implementation support the scheme specified in a URI
.
Timer id conversion keeps objects alive for a certain amount of time after their last access. The default time period is 600 seconds and can be changed upon initialization.
To use TimerIdConv:
DRb.install_id_conv TimerIdConv.new 60 # one minute
Raised when the provided IP address is an invalid address.
Raised when the address is an invalid length.
FIXME: This isn’t documented in Nutshell.
Since MonitorMixin.new_cond
returns a ConditionVariable
, and the example above calls while_wait and signal, this class should be documented.
HTTP request class. This class wraps together the request header and the request path. You cannot use this class directly. Instead, you should use one of its subclasses: Net::HTTP::Get
, Net::HTTP::Post
, Net::HTTP::Head
.