Resolves the requested dependencies into a {DependencyGraph}, locking to the base dependency graph (if specified) @param [Array] requested an array of ‘requested’ dependencies that the
{#specification_provider} can understand
@param [DependencyGraph,nil] base the base dependency graph to which
dependencies should be 'locked'
Returns the value of the given instance variable, or nil if the instance variable is not set. The @
part of the variable name should be included for regular instance variables. Throws a NameError
exception if the supplied symbol is not valid as an instance variable name. String arguments are converted to symbols.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_get(:@a) #=> "cat" fred.instance_variable_get("@b") #=> 99
Sets the instance variable named by symbol to the given object, thereby frustrating the efforts of the class’s author to attempt to provide proper encapsulation. The variable does not have to exist prior to this call. If the instance variable name is passed as a string, that string is converted to a symbol.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_set(:@a, 'dog') #=> "dog" fred.instance_variable_set(:@c, 'cat') #=> "cat" fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
Returns true
if the given instance variable is defined in obj. String arguments are converted to symbols.
class Fred def initialize(p1, p2) @a, @b = p1, p2 end end fred = Fred.new('cat', 99) fred.instance_variable_defined?(:@a) #=> true fred.instance_variable_defined?("@b") #=> true fred.instance_variable_defined?("@c") #=> false
Defines a singleton method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body.
class A class << self def class_name to_s end end end A.define_singleton_method(:who_am_i) do "I am: #{class_name}" end A.who_am_i # ==> "I am: A" guy = "Bob" guy.define_singleton_method(:hello) { "#{self}: Hello there!" } guy.hello #=> "Bob: Hello there!"
Trap attempts to add methods to Numeric
objects. Always raises a TypeError
.
Numerics should be values; singleton_methods should not be added to them.
Returns a list of the public instance methods defined in mod. If the optional parameter is false
, the methods of any ancestors are not included.
Returns a list of the protected instance methods defined in mod. If the optional parameter is false
, the methods of any ancestors are not included.
Returns a list of the private instance methods defined in mod. If the optional parameter is false
, the methods of any ancestors are not included.
module Mod def method1() end private :method1 def method2() end end Mod.instance_methods #=> [:method2] Mod.private_instance_methods #=> [:method1]
Removes the definition of the sym, returning that constant’s value.
class Dummy @@var = 99 puts @@var remove_class_variable(:@@var) p(defined? @@var) end
produces:
99 nil
Similar to instance_method, searches public method only.
Returns a relative path from the given base_directory
to the receiver.
If self
is absolute, then base_directory
must be absolute too.
If self
is relative, then base_directory
must be relative too.
This method doesn’t access the filesystem. It assumes no symlinks.
ArgumentError
is raised when it cannot find a relative path.
Receive UDP/IP packets from the given sockets. For each packet received, the block is called.
The block receives msg and msg_src. msg is a string which is the payload of the received packet. msg_src is a Socket::UDPSource
object which is used for reply.
Socket.udp_server_loop
can be implemented using this method as follows.
udp_server_sockets(host, port) {|sockets| loop { readable, _, _ = IO.select(sockets) udp_server_recv(readable) {|msg, msg_src| ... } } }
Returns true for IPv6 multicast organization-local scope address. It returns false otherwise.
Returns IPv4 address of IPv4 mapped/compatible IPv6 address. It returns nil if self
is not IPv4 mapped/compatible IPv6 address.
Addrinfo.ip("::192.0.2.3").ipv6_to_ipv4 #=> #<Addrinfo: 192.0.2.3> Addrinfo.ip("::ffff:192.0.2.3").ipv6_to_ipv4 #=> #<Addrinfo: 192.0.2.3> Addrinfo.ip("::1").ipv6_to_ipv4 #=> nil Addrinfo.ip("192.0.2.3").ipv6_to_ipv4 #=> nil Addrinfo.unix("/tmp/sock").ipv6_to_ipv4 #=> nil
Returns detail information of return value type of method. The information is array.
tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Workbooks') method = WIN32OLE_METHOD.new(tobj, 'Add') p method.return_type_detail # => ["PTR", "USERDEFINED", "Workbook"]
Invoked as a callback whenever a singleton method is added to the receiver.
module Chatty def Chatty.singleton_method_added(id) puts "Adding #{id.id2name}" end def self.one() end def two() end def Chatty.three() end end
produces:
Adding singleton_method_added Adding one Adding three
Invoked as a callback whenever a singleton method is undefined in the receiver.
module Chatty def Chatty.singleton_method_undefined(id) puts "Undefining #{id.id2name}" end def Chatty.one() end class << self undef_method(:one) end end
produces:
Undefining one
Makes hsh compare its keys by their identity, i.e. it will consider exact same objects as same keys.
h1 = { "a" => 100, "b" => 200, :c => "c" } h1["a"] #=> 100 h1.compare_by_identity h1.compare_by_identity? #=> true h1["a".dup] #=> nil # different objects. h1[:c] #=> "c" # same symbols are all same.
Returns true
if hsh will compare its keys by their identity. Also see Hash#compare_by_identity
.
Returns IO
instance tied to ARGF for writing if inplace mode is enabled.
Task
description for the rerdoc task or its renamed description