Results for: "OptionParser"

Args

logdev

The log device. This is a filename (String) or IO object (typically STDOUT, STDERR, or an open file).

Description

Reopen a log device.

Log a WARN message.

See info for more information.

Log an ERROR message.

See info for more information.

Close the logging device.

provides a unified clone operation, for REXML::XPathParser to use across multiple Object types

Returns true if fix is zero.

Creates a matrix where the diagonal elements are composed of values.

Matrix.diagonal(9, 5, -3)
  =>  9  0  0
      0  5  0
      0  0 -3

Creates an n by n diagonal matrix where each diagonal element is value.

Matrix.scalar(2, 5)
  => 5 0
     0 5

Creates an n by n identity matrix.

Matrix.identity(2)
  => 1 0
     0 1

Creates a zero matrix.

Matrix.zero(2)
  => 0 0
     0 0

Creates a empty matrix of row_count x column_count. At least one of row_count or column_count must be 0.

m = Matrix.empty(2, 0)
m == Matrix[ [], [] ]
  => true
n = Matrix.empty(0, 3)
n == Matrix.columns([ [], [], [] ])
  => true
m * n
  => Matrix[[0, 0, 0], [0, 0, 0]]
No documentation available

Returns true if this is a diagonal matrix. Raises an error if matrix is not square.

Returns true if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.

Returns true if this is an orthogonal matrix Raises an error if matrix is not square.

Returns true if this is a regular (i.e. non-singular) matrix.

Returns true if this is a singular matrix.

Returns true if this is a square matrix.

Returns true if this is a unitary matrix Raises an error if matrix is not square.

Returns true if this is a matrix with only zero elements

Returns a clone of the matrix, so that the contents of each do not reference identical objects. There should be no good reason to do this since Matrices are immutable.

Returns the determinant of the matrix.

Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.

Matrix[[7,6], [3,9]].determinant
  => 45

deprecated; use Matrix#determinant

Returns the transpose of the matrix.

Matrix[[1,2], [3,4], [5,6]]
  => 1 2
     3 4
     5 6
Matrix[[1,2], [3,4], [5,6]].transpose
  => 1 3 5
     2 4 6

Returns the conjugate of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i   i  0
        1   2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
  => 1-2i  -i  0
        1   2  3
Search took: 4ms  ·  Total Results: 4164