Provides information about specifcations and dependencies to the resolver, allowing the {Resolver} class to remain generic while still providing power and flexibility.
This module contains the methods that users of Gem::Resolver::Molinillo
must to implement, using knowledge of their own model classes.
Continuation
objects are generated by Kernel#callcc
, after having +require+d continuation. They hold a return address and execution context, allowing a nonlocal return to the end of the callcc
block from anywhere within a program. Continuations are somewhat analogous to a structured version of C’s setjmp/longjmp
(although they contain more state, so you might consider them closer to threads).
For instance:
require "continuation" arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ] callcc{|cc| $cc = cc} puts(message = arr.shift) $cc.call unless message =~ /Max/
produces:
Freddie Herbie Ron Max
Also you can call callcc in other methods:
require "continuation" def g arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ] cc = callcc { |cc| cc } puts arr.shift return cc, arr.size end def f c, size = g c.call(c) if size > 1 end f
This (somewhat contrived) example allows the inner loop to abandon processing early:
require "continuation" callcc {|cont| for i in 0..4 print "\n#{i}: " for j in i*5...(i+1)*5 cont.call() if j == 17 printf "%3d", j end end } puts
produces:
0: 0 1 2 3 4 1: 5 6 7 8 9 2: 10 11 12 13 14 3: 15 16
ConditionVariable
objects augment class Mutex. Using condition variables, it is possible to suspend while in the middle of a critical section until a resource becomes available.
Example:
require 'thread' mutex = Mutex.new resource = ConditionVariable.new a = Thread.new { mutex.synchronize { # Thread 'a' now needs the resource resource.wait(mutex) # 'a' can now have the resource } } b = Thread.new { mutex.synchronize { # Thread 'b' has finished using the resource resource.signal } }
Raised to stop the iteration, in particular by Enumerator#next
. It is rescued by Kernel#loop
.
loop do puts "Hello" raise StopIteration puts "World" end puts "Done!"
produces:
Hello Done!
An OpenStruct
is a data structure, similar to a Hash
, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.
require "ostruct" person = OpenStruct.new person.name = "John Smith" person.age = 70 person.name # => "John Smith" person.age # => 70 person.address # => nil
An OpenStruct
employs a Hash
internally to store the attributes and values and can even be initialized with one:
australia = OpenStruct.new(:country => "Australia", :capital => "Canberra") # => #<OpenStruct country="Australia", capital="Canberra">
Hash
keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*
) will not be immediately available on the OpenStruct
object as a method for retrieval or assignment, but can still be reached through the Object#send
method.
measurements = OpenStruct.new("length (in inches)" => 24) measurements.send("length (in inches)") # => 24 message = OpenStruct.new(:queued? => true) message.queued? # => true message.send("queued?=", false) message.queued? # => false
Removing the presence of an attribute requires the execution of the delete_field method as setting the property value to nil
will not remove the attribute.
first_pet = OpenStruct.new(:name => "Rowdy", :owner => "John Smith") second_pet = OpenStruct.new(:name => "Rowdy") first_pet.owner = nil first_pet # => #<OpenStruct name="Rowdy", owner=nil> first_pet == second_pet # => false first_pet.delete_field(:owner) first_pet # => #<OpenStruct name="Rowdy"> first_pet == second_pet # => true
An OpenStruct
utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.
This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash
or a Struct
.
Kanji Converter for Ruby.
A specific resolution from a given {Resolver}
The InstructionSequence
class represents a compiled sequence of instructions for the Ruby Virtual Machine.
With it, you can get a handle to the instructions that make up a method or a proc, compile strings of Ruby code down to VM instructions, and disassemble instruction sequences to strings for easy inspection. It is mostly useful if you want to learn how the Ruby VM works, but it also lets you control various settings for the Ruby iseq compiler.
You can find the source for the VM instructions in insns.def
in the Ruby source.
The instruction sequence results will almost certainly change as Ruby changes, so example output in this documentation may be different from what you see.
This is a set of entity constants – the ones defined in the XML
specification. These are gt
, lt
, amp
, quot
and apos
. CAUTION: these entities does not have parent and document
Mixin methods for install and update options for Gem::Commands
FIXME: This isn’t documented in Nutshell.
Since MonitorMixin.new_cond
returns a ConditionVariable
, and the example above calls while_wait and signal, this class should be documented.
Represents an XML
Instruction
; IE, <? … ?> TODO: Add parent arg (3rd arg) to constructor
A test case for Gem::Installer
.
Subclass of StreamUI that instantiates the user interaction using STDIN, STDOUT, and STDERR.
Raised when memory allocation fails.
OpenSSL::Config
Configuration for the openssl library.
Many system’s installation of openssl library will depend on your system configuration. See the value of OpenSSL::Config::DEFAULT_CONFIG_FILE
for the location of the file for your host.
General error for openssl library configuration files. Including formatting, parsing errors, etc.
Error raised when an error occurs on the underlying communication protocol.
Class
responsible for converting between an object and its id.
This, the default implementation, uses an object’s local ObjectSpace
__id__ as its id. This means that an object’s identification over drb remains valid only while that object instance remains alive within the server runtime.
For alternative mechanisms, see DRb::TimerIdConv
in rdb/timeridconv.rb and DRbNameIdConv in sample/name.rb in the full drb distribution.
Class
handling the connection between a DRbObject
and the server the real object lives on.
This class maintains a pool of connections, to reduce the overhead of starting and closing down connections for each method call.
This class is used internally by DRbObject
. The user does not normally need to deal with it directly.
Class
responsible for converting between an object and its id.
This, the default implementation, uses an object’s local ObjectSpace
__id__ as its id. This means that an object’s identification over drb remains valid only while that object instance remains alive within the server runtime.
For alternative mechanisms, see DRb::TimerIdConv
in rdb/timeridconv.rb and DRbNameIdConv in sample/name.rb in the full drb distribution.