Results for: "remove_const"

Provides information about specifcations and dependencies to the resolver, allowing the {Resolver} class to remain generic while still providing power and flexibility.

This module contains the methods that users of Gem::Resolver::Molinillo must to implement, using knowledge of their own model classes.

Continuation objects are generated by Kernel#callcc, after having +require+d continuation. They hold a return address and execution context, allowing a nonlocal return to the end of the callcc block from anywhere within a program. Continuations are somewhat analogous to a structured version of C’s setjmp/longjmp (although they contain more state, so you might consider them closer to threads).

For instance:

require "continuation"
arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
callcc{|cc| $cc = cc}
puts(message = arr.shift)
$cc.call unless message =~ /Max/

produces:

Freddie
Herbie
Ron
Max

Also you can call callcc in other methods:

require "continuation"

def g
  arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
  cc = callcc { |cc| cc }
  puts arr.shift
  return cc, arr.size
end

def f
  c, size = g
  c.call(c) if size > 1
end

f

This (somewhat contrived) example allows the inner loop to abandon processing early:

require "continuation"
callcc {|cont|
  for i in 0..4
    print "\n#{i}: "
    for j in i*5...(i+1)*5
      cont.call() if j == 17
      printf "%3d", j
    end
  end
}
puts

produces:

0:   0  1  2  3  4
1:   5  6  7  8  9
2:  10 11 12 13 14
3:  15 16

ConditionVariable objects augment class Mutex. Using condition variables, it is possible to suspend while in the middle of a critical section until a resource becomes available.

Example:

require 'thread'

mutex = Mutex.new
resource = ConditionVariable.new

a = Thread.new {
   mutex.synchronize {
     # Thread 'a' now needs the resource
     resource.wait(mutex)
     # 'a' can now have the resource
   }
}

b = Thread.new {
   mutex.synchronize {
     # Thread 'b' has finished using the resource
     resource.signal
   }
}

Raised to stop the iteration, in particular by Enumerator#next. It is rescued by Kernel#loop.

loop do
  puts "Hello"
  raise StopIteration
  puts "World"
end
puts "Done!"

produces:

Hello
Done!

An OpenStruct is a data structure, similar to a Hash, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.

Examples

require "ostruct"

person = OpenStruct.new
person.name = "John Smith"
person.age  = 70

person.name      # => "John Smith"
person.age       # => 70
person.address   # => nil

An OpenStruct employs a Hash internally to store the attributes and values and can even be initialized with one:

australia = OpenStruct.new(:country => "Australia", :capital => "Canberra")
  # => #<OpenStruct country="Australia", capital="Canberra">

Hash keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*) will not be immediately available on the OpenStruct object as a method for retrieval or assignment, but can still be reached through the Object#send method.

measurements = OpenStruct.new("length (in inches)" => 24)
measurements.send("length (in inches)")   # => 24

message = OpenStruct.new(:queued? => true)
message.queued?                           # => true
message.send("queued?=", false)
message.queued?                           # => false

Removing the presence of an attribute requires the execution of the delete_field method as setting the property value to nil will not remove the attribute.

first_pet  = OpenStruct.new(:name => "Rowdy", :owner => "John Smith")
second_pet = OpenStruct.new(:name => "Rowdy")

first_pet.owner = nil
first_pet                 # => #<OpenStruct name="Rowdy", owner=nil>
first_pet == second_pet   # => false

first_pet.delete_field(:owner)
first_pet                 # => #<OpenStruct name="Rowdy">
first_pet == second_pet   # => true

Implementation

An OpenStruct utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.

This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash or a Struct.

Kanji Converter for Ruby.

No documentation available

A specific resolution from a given {Resolver}

The InstructionSequence class represents a compiled sequence of instructions for the Ruby Virtual Machine.

With it, you can get a handle to the instructions that make up a method or a proc, compile strings of Ruby code down to VM instructions, and disassemble instruction sequences to strings for easy inspection. It is mostly useful if you want to learn how the Ruby VM works, but it also lets you control various settings for the Ruby iseq compiler.

You can find the source for the VM instructions in insns.def in the Ruby source.

The instruction sequence results will almost certainly change as Ruby changes, so example output in this documentation may be different from what you see.

This is a set of entity constants – the ones defined in the XML specification. These are gt, lt, amp, quot and apos. CAUTION: these entities does not have parent and document

Mixin methods for install and update options for Gem::Commands

FIXME: This isn’t documented in Nutshell.

Since MonitorMixin.new_cond returns a ConditionVariable, and the example above calls while_wait and signal, this class should be documented.

No documentation available

Represents an XML Instruction; IE, <? … ?> TODO: Add parent arg (3rd arg) to constructor

A test case for Gem::Installer.

Subclass of StreamUI that instantiates the user interaction using STDIN, STDOUT, and STDERR.

No documentation available

Raised when memory allocation fails.

No documentation available

OpenSSL::Config

Configuration for the openssl library.

Many system’s installation of openssl library will depend on your system configuration. See the value of OpenSSL::Config::DEFAULT_CONFIG_FILE for the location of the file for your host.

See also www.openssl.org/docs/apps/config.html

General error for openssl library configuration files. Including formatting, parsing errors, etc.

Error raised when an error occurs on the underlying communication protocol.

Class responsible for converting between an object and its id.

This, the default implementation, uses an object’s local ObjectSpace __id__ as its id. This means that an object’s identification over drb remains valid only while that object instance remains alive within the server runtime.

For alternative mechanisms, see DRb::TimerIdConv in rdb/timeridconv.rb and DRbNameIdConv in sample/name.rb in the full drb distribution.

Class handling the connection between a DRbObject and the server the real object lives on.

This class maintains a pool of connections, to reduce the overhead of starting and closing down connections for each method call.

This class is used internally by DRbObject. The user does not normally need to deal with it directly.

Class responsible for converting between an object and its id.

This, the default implementation, uses an object’s local ObjectSpace __id__ as its id. This means that an object’s identification over drb remains valid only while that object instance remains alive within the server runtime.

For alternative mechanisms, see DRb::TimerIdConv in rdb/timeridconv.rb and DRbNameIdConv in sample/name.rb in the full drb distribution.

Search took: 6ms  ·  Total Results: 3750