Results for: "OptionParser"

Invokes the given block passing in successive elements from self, deleting elements for which the block returns a false value.

The array may not be changed instantly every time the block is called.

If changes were made, it will return self, otherwise it returns nil.

See also Array#keep_if

If no block is given, an Enumerator is returned instead.

Assumes that self is an array of arrays and transposes the rows and columns.

a = [[1,2], [3,4], [5,6]]
a.transpose   #=> [[1, 3, 5], [2, 4, 6]]

If the length of the subarrays don’t match, an IndexError is raised.

Removes all elements from self.

a = [ "a", "b", "c", "d", "e" ]
a.clear    #=> [ ]

Returns a copy of self with all nil elements removed.

[ "a", nil, "b", nil, "c", nil ].compact
                  #=> [ "a", "b", "c" ]

Removes nil elements from the array.

Returns nil if no changes were made, otherwise returns the array.

[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
[ "a", "b", "c" ].compact!           #=> nil

Drops first n elements from ary and returns the rest of the elements in an array.

If a negative number is given, raises an ArgumentError.

See also Array#take

a = [1, 2, 3, 4, 5, 0]
a.drop(3)             #=> [4, 5, 0]

provides a unified clone operation, for REXML::XPathParser to use across multiple Object+ types

Packs the contents of arr into a binary sequence according to the directives in aTemplateString (see the table below) Directives “A,” “a,” and “Z” may be followed by a count, which gives the width of the resulting field. The remaining directives also may take a count, indicating the number of array elements to convert. If the count is an asterisk (“*”), all remaining array elements will be converted. Any of the directives “sSiIlL” may be followed by an underscore (“_”) or exclamation mark (“!”) to use the underlying platform’s native size for the specified type; otherwise, they use a platform-independent size. Spaces are ignored in the template string. See also String#unpack.

a = [ "a", "b", "c" ]
n = [ 65, 66, 67 ]
a.pack("A3A3A3")   #=> "a  b  c  "
a.pack("a3a3a3")   #=> "a\000\000b\000\000c\000\000"
n.pack("ccc")      #=> "ABC"

Directives for pack.

Integer      | Array   |
Directive    | Element | Meaning
---------------------------------------------------------------------------
   C         | Integer | 8-bit unsigned (unsigned char)
   S         | Integer | 16-bit unsigned, native endian (uint16_t)
   L         | Integer | 32-bit unsigned, native endian (uint32_t)
   Q         | Integer | 64-bit unsigned, native endian (uint64_t)
   J         | Integer | pointer width unsigned, native endian (uintptr_t)
             |         | (J is available since Ruby 2.3.)
             |         |
   c         | Integer | 8-bit signed (signed char)
   s         | Integer | 16-bit signed, native endian (int16_t)
   l         | Integer | 32-bit signed, native endian (int32_t)
   q         | Integer | 64-bit signed, native endian (int64_t)
   j         | Integer | pointer width signed, native endian (intptr_t)
             |         | (j is available since Ruby 2.3.)
             |         |
   S_, S!    | Integer | unsigned short, native endian
   I, I_, I! | Integer | unsigned int, native endian
   L_, L!    | Integer | unsigned long, native endian
   Q_, Q!    | Integer | unsigned long long, native endian (ArgumentError
             |         | if the platform has no long long type.)
             |         | (Q_ and Q! is available since Ruby 2.1.)
   J!        | Integer | uintptr_t, native endian (same with J)
             |         | (J! is available since Ruby 2.3.)
             |         |
   s_, s!    | Integer | signed short, native endian
   i, i_, i! | Integer | signed int, native endian
   l_, l!    | Integer | signed long, native endian
   q_, q!    | Integer | signed long long, native endian (ArgumentError
             |         | if the platform has no long long type.)
             |         | (q_ and q! is available since Ruby 2.1.)
   j!        | Integer | intptr_t, native endian (same with j)
             |         | (j! is available since Ruby 2.3.)
             |         |
   S> L> Q>  | Integer | same as the directives without ">" except
   J> s> l>  |         | big endian
   q> j>     |         | (available since Ruby 1.9.3)
   S!> I!>   |         | "S>" is same as "n"
   L!> Q!>   |         | "L>" is same as "N"
   J!> s!>   |         |
   i!> l!>   |         |
   q!> j!>   |         |
             |         |
   S< L< Q<  | Integer | same as the directives without "<" except
   J< s< l<  |         | little endian
   q< j<     |         | (available since Ruby 1.9.3)
   S!< I!<   |         | "S<" is same as "v"
   L!< Q!<   |         | "L<" is same as "V"
   J!< s!<   |         |
   i!< l!<   |         |
   q!< j!<   |         |
             |         |
   n         | Integer | 16-bit unsigned, network (big-endian) byte order
   N         | Integer | 32-bit unsigned, network (big-endian) byte order
   v         | Integer | 16-bit unsigned, VAX (little-endian) byte order
   V         | Integer | 32-bit unsigned, VAX (little-endian) byte order
             |         |
   U         | Integer | UTF-8 character
   w         | Integer | BER-compressed integer

Float        |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   D, d      | Float   | double-precision, native format
   F, f      | Float   | single-precision, native format
   E         | Float   | double-precision, little-endian byte order
   e         | Float   | single-precision, little-endian byte order
   G         | Float   | double-precision, network (big-endian) byte order
   g         | Float   | single-precision, network (big-endian) byte order

String       |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   A         | String  | arbitrary binary string (space padded, count is width)
   a         | String  | arbitrary binary string (null padded, count is width)
   Z         | String  | same as ``a'', except that null is added with *
   B         | String  | bit string (MSB first)
   b         | String  | bit string (LSB first)
   H         | String  | hex string (high nibble first)
   h         | String  | hex string (low nibble first)
   u         | String  | UU-encoded string
   M         | String  | quoted printable, MIME encoding (see RFC2045)
   m         | String  | base64 encoded string (see RFC 2045, count is width)
             |         | (if count is 0, no line feed are added, see RFC 4648)
   P         | String  | pointer to a structure (fixed-length string)
   p         | String  | pointer to a null-terminated string

Misc.        |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   @         | ---     | moves to absolute position
   X         | ---     | back up a byte
   x         | ---     | null byte

Returns an array with both a numeric and a big represented as Bignum objects.

This is achieved by converting numeric to a Bignum.

A TypeError is raised if the numeric is not a Fixnum or Bignum type.

(0x3FFFFFFFFFFFFFFF+1).coerce(42)   #=> [42, 4611686018427387904]

Returns the remainder after dividing big by numeric.

-1234567890987654321.remainder(13731)      #=> -6966
-1234567890987654321.remainder(13731.24)   #=> -9906.22531493148

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)

Returns a complex object which denotes the given polar form.

Complex.polar(3, 0)            #=> (3.0+0.0i)
Complex.polar(3, Math::PI/2)   #=> (1.836909530733566e-16+3.0i)
Complex.polar(3, Math::PI)     #=> (-3.0+3.673819061467132e-16i)
Complex.polar(3, -Math::PI/2)  #=> (1.836909530733566e-16-3.0i)

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]

Returns an array; [cmp.abs, cmp.arg].

Complex(1, 2).polar  #=> [2.23606797749979, 1.1071487177940904]

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)

Returns the numerator.

    1   2       3+4i  <-  numerator
    - + -i  ->  ----
    2   3        6    <-  denominator

c = Complex('1/2+2/3i')  #=> ((1/2)+(2/3)*i)
n = c.numerator          #=> (3+4i)
d = c.denominator        #=> 6
n / d                    #=> ((1/2)+(2/3)*i)
Complex(Rational(n.real, d), Rational(n.imag, d))
                         #=> ((1/2)+(2/3)*i)

See denominator.

Returns zero.

Returns 0 if the value is positive, pi otherwise.

Returns 0 if the value is positive, pi otherwise.

Returns an array; [num, 0].

Returns an array; [num.abs, num.arg].

Search took: 5ms  ·  Total Results: 4164