Invokes the given block passing in successive elements from self
, deleting elements for which the block returns a false
value.
The array may not be changed instantly every time the block is called.
If changes were made, it will return self
, otherwise it returns nil
.
See also Array#keep_if
If no block is given, an Enumerator
is returned instead.
Assumes that self
is an array of arrays and transposes the rows and columns.
a = [[1,2], [3,4], [5,6]] a.transpose #=> [[1, 3, 5], [2, 4, 6]]
If the length of the subarrays don’t match, an IndexError
is raised.
Returns a copy of self
with all nil
elements removed.
[ "a", nil, "b", nil, "c", nil ].compact #=> [ "a", "b", "c" ]
Removes nil
elements from the array.
Returns nil
if no changes were made, otherwise returns the array.
[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ] [ "a", "b", "c" ].compact! #=> nil
Drops first n
elements from ary
and returns the rest of the elements in an array.
If a negative number is given, raises an ArgumentError
.
See also Array#take
a = [1, 2, 3, 4, 5, 0] a.drop(3) #=> [4, 5, 0]
provides a unified clone
operation, for REXML::XPathParser
to use across multiple Object+ types
Packs the contents of arr into a binary sequence according to the directives in aTemplateString (see the table below) Directives “A,” “a,” and “Z” may be followed by a count, which gives the width of the resulting field. The remaining directives also may take a count, indicating the number of array elements to convert. If the count is an asterisk (“*
”), all remaining array elements will be converted. Any of the directives “sSiIlL
” may be followed by an underscore (“_
”) or exclamation mark (“!
”) to use the underlying platform’s native size for the specified type; otherwise, they use a platform-independent size. Spaces are ignored in the template string. See also String#unpack
.
a = [ "a", "b", "c" ] n = [ 65, 66, 67 ] a.pack("A3A3A3") #=> "a b c " a.pack("a3a3a3") #=> "a\000\000b\000\000c\000\000" n.pack("ccc") #=> "ABC"
Directives for pack
.
Integer | Array | Directive | Element | Meaning --------------------------------------------------------------------------- C | Integer | 8-bit unsigned (unsigned char) S | Integer | 16-bit unsigned, native endian (uint16_t) L | Integer | 32-bit unsigned, native endian (uint32_t) Q | Integer | 64-bit unsigned, native endian (uint64_t) J | Integer | pointer width unsigned, native endian (uintptr_t) | | (J is available since Ruby 2.3.) | | c | Integer | 8-bit signed (signed char) s | Integer | 16-bit signed, native endian (int16_t) l | Integer | 32-bit signed, native endian (int32_t) q | Integer | 64-bit signed, native endian (int64_t) j | Integer | pointer width signed, native endian (intptr_t) | | (j is available since Ruby 2.3.) | | S_, S! | Integer | unsigned short, native endian I, I_, I! | Integer | unsigned int, native endian L_, L! | Integer | unsigned long, native endian Q_, Q! | Integer | unsigned long long, native endian (ArgumentError | | if the platform has no long long type.) | | (Q_ and Q! is available since Ruby 2.1.) J! | Integer | uintptr_t, native endian (same with J) | | (J! is available since Ruby 2.3.) | | s_, s! | Integer | signed short, native endian i, i_, i! | Integer | signed int, native endian l_, l! | Integer | signed long, native endian q_, q! | Integer | signed long long, native endian (ArgumentError | | if the platform has no long long type.) | | (q_ and q! is available since Ruby 2.1.) j! | Integer | intptr_t, native endian (same with j) | | (j! is available since Ruby 2.3.) | | S> L> Q> | Integer | same as the directives without ">" except J> s> l> | | big endian q> j> | | (available since Ruby 1.9.3) S!> I!> | | "S>" is same as "n" L!> Q!> | | "L>" is same as "N" J!> s!> | | i!> l!> | | q!> j!> | | | | S< L< Q< | Integer | same as the directives without "<" except J< s< l< | | little endian q< j< | | (available since Ruby 1.9.3) S!< I!< | | "S<" is same as "v" L!< Q!< | | "L<" is same as "V" J!< s!< | | i!< l!< | | q!< j!< | | | | n | Integer | 16-bit unsigned, network (big-endian) byte order N | Integer | 32-bit unsigned, network (big-endian) byte order v | Integer | 16-bit unsigned, VAX (little-endian) byte order V | Integer | 32-bit unsigned, VAX (little-endian) byte order | | U | Integer | UTF-8 character w | Integer | BER-compressed integer Float | | Directive | | Meaning --------------------------------------------------------------------------- D, d | Float | double-precision, native format F, f | Float | single-precision, native format E | Float | double-precision, little-endian byte order e | Float | single-precision, little-endian byte order G | Float | double-precision, network (big-endian) byte order g | Float | single-precision, network (big-endian) byte order String | | Directive | | Meaning --------------------------------------------------------------------------- A | String | arbitrary binary string (space padded, count is width) a | String | arbitrary binary string (null padded, count is width) Z | String | same as ``a'', except that null is added with * B | String | bit string (MSB first) b | String | bit string (LSB first) H | String | hex string (high nibble first) h | String | hex string (low nibble first) u | String | UU-encoded string M | String | quoted printable, MIME encoding (see RFC2045) m | String | base64 encoded string (see RFC 2045, count is width) | | (if count is 0, no line feed are added, see RFC 4648) P | String | pointer to a structure (fixed-length string) p | String | pointer to a null-terminated string Misc. | | Directive | | Meaning --------------------------------------------------------------------------- @ | --- | moves to absolute position X | --- | back up a byte x | --- | null byte
Returns an array with both a numeric
and a big
represented as Bignum
objects.
This is achieved by converting numeric
to a Bignum
.
A TypeError
is raised if the numeric
is not a Fixnum
or Bignum
type.
(0x3FFFFFFFFFFFFFFF+1).coerce(42) #=> [42, 4611686018427387904]
Returns the remainder after dividing big by numeric.
-1234567890987654321.remainder(13731) #=> -6966 -1234567890987654321.remainder(13731.24) #=> -9906.22531493148
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1, 2) #=> (1+2i)
Returns a complex object which denotes the given polar form.
Complex.polar(3, 0) #=> (3.0+0.0i) Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i) Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i) Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)
Returns the imaginary part.
Complex(7).imaginary #=> 0 Complex(9, -4).imaginary #=> -4
Returns the angle part of its polar form.
Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
Returns the angle part of its polar form.
Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
Returns an array; [cmp.abs, cmp.arg].
Complex(1, 2).polar #=> [2.23606797749979, 1.1071487177940904]
Returns the numerator.
1 2 3+4i <- numerator - + -i -> ---- 2 3 6 <- denominator c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i) n = c.numerator #=> (3+4i) d = c.denominator #=> 6 n / d #=> ((1/2)+(2/3)*i) Complex(Rational(n.real, d), Rational(n.imag, d)) #=> ((1/2)+(2/3)*i)
See denominator.
Returns zero.
Returns 0 if the value is positive, pi otherwise.
Returns 0 if the value is positive, pi otherwise.
Returns an array; [num, 0].
Returns an array; [num.abs, num.arg].