Returns true
if the named file is writable by the real user and group id of this process. See access(3)
If file_name is writable by others, returns an integer representing the file permission bits of file_name. Returns nil
otherwise. The meaning of the bits is platform dependent; on Unix systems, see stat(2)
.
file_name can be an IO
object.
File.world_writable?("/tmp") #=> 511 m = File.world_writable?("/tmp") sprintf("%o", m) #=> "777"
Returns true
if the named file is executable by the real user and group id of this process. See access(3).
Returns the list of available encoding names.
Encoding.name_list #=> ["US-ASCII", "ASCII-8BIT", "UTF-8", "ISO-8859-1", "Shift_JIS", "EUC-JP", "Windows-31J", "BINARY", "CP932", "eucJP"]
Creates a new Enumerator
which will enumerate by calling method
on obj
, passing args
if any.
If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size
).
str = "xyz" enum = str.enum_for(:each_byte) enum.each { |b| puts b } # => 120 # => 121 # => 122 # protect an array from being modified by some_method a = [1, 2, 3] some_method(a.to_enum)
It is typical to call to_enum
when defining methods for a generic Enumerable
, in case no block is passed.
Here is such an example, with parameter passing and a sizing block:
module Enumerable # a generic method to repeat the values of any enumerable def repeat(n) raise ArgumentError, "#{n} is negative!" if n < 0 unless block_given? return to_enum(__method__, n) do # __method__ is :repeat here sz = size # Call size and multiply by n... sz * n if sz # but return nil if size itself is nil end end each do |*val| n.times { yield *val } end end end %i[hello world].repeat(2) { |w| puts w } # => Prints 'hello', 'hello', 'world', 'world' enum = (1..14).repeat(3) # => returns an Enumerator when called without a block enum.first(4) # => [1, 1, 1, 2] enum.size # => 42
Creates a new Enumerator
which will enumerate by calling method
on obj
, passing args
if any.
If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size
).
str = "xyz" enum = str.enum_for(:each_byte) enum.each { |b| puts b } # => 120 # => 121 # => 122 # protect an array from being modified by some_method a = [1, 2, 3] some_method(a.to_enum)
It is typical to call to_enum
when defining methods for a generic Enumerable
, in case no block is passed.
Here is such an example, with parameter passing and a sizing block:
module Enumerable # a generic method to repeat the values of any enumerable def repeat(n) raise ArgumentError, "#{n} is negative!" if n < 0 unless block_given? return to_enum(__method__, n) do # __method__ is :repeat here sz = size # Call size and multiply by n... sz * n if sz # but return nil if size itself is nil end end each do |*val| n.times { yield *val } end end end %i[hello world].repeat(2) { |w| puts w } # => Prints 'hello', 'hello', 'world', 'world' enum = (1..14).repeat(3) # => returns an Enumerator when called without a block enum.first(4) # => [1, 1, 1, 2] enum.size # => 42
Returns the singleton class of obj. This method creates a new singleton class if obj does not have one.
If obj is nil
, true
, or false
, it returns NilClass
, TrueClass
, or FalseClass
, respectively. If obj is a Fixnum
or a Symbol
, it raises a TypeError
.
Object.new.singleton_class #=> #<Class:#<Object:0xb7ce1e24>> String.singleton_class #=> #<Class:String> nil.singleton_class #=> NilClass
Returns an array of the names of singleton methods for obj. If the optional all parameter is true, the list will include methods in modules included in obj. Only public and protected singleton methods are returned.
module Other def three() end end class Single def Single.four() end end a = Single.new def a.one() end class << a include Other def two() end end Single.singleton_methods #=> [:four] a.singleton_methods(false) #=> [:two, :one] a.singleton_methods #=> [:two, :one, :three]
Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.
class Fred attr_accessor :a1 def initialize @iv = 3 end end Fred.new.instance_variables #=> [:@iv]
Returns true
if obj is an instance of the given class. See also Object#kind_of?
.
class A; end class B < A; end class C < B; end b = B.new b.instance_of? A #=> false b.instance_of? B #=> true b.instance_of? C #=> false
Similar to method, searches singleton method only.
class Demo def initialize(n) @iv = n end def hello() "Hello, @iv = #{@iv}" end end k = Demo.new(99) def k.hi "Hi, @iv = #{@iv}" end m = k.singleton_method(:hi) m.call #=> "Hi, @iv = 99" m = k.singleton_method(:hello) #=> NameError
Deserializes JSON
string by constructing new Exception
object with message m
and backtrace b
serialized with to_json
When this module is included in another, Ruby calls append_features
in this module, passing it the receiving module in mod. Ruby’s default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include
.
Callback invoked whenever the receiver is included in another module or class. This should be used in preference to Module.append_features
if your code wants to perform some action when a module is included in another.
module A def A.included(mod) puts "#{self} included in #{mod}" end end module Enumerable include A end # => prints "A included in Enumerable"
Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr
:name” on each name in turn. String arguments are converted to symbols.
Defines a named attribute for this module, where the name is symbol.id2name
, creating an instance variable (@name
) and a corresponding access method to read it. Also creates a method called name=
to set the attribute. String arguments are converted to symbols.
module Mod attr_accessor(:one, :two) end Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false
, the methods of any ancestors are not included.
module A def method1() end end class B include A def method2() end end class C < B def method3() end end A.instance_methods(false) #=> [:method1] B.instance_methods(false) #=> [:method2] B.instance_methods(true).include?(:method1) #=> true C.instance_methods(false) #=> [:method3] C.instance_methods.include?(:method2) #=> true
Checks for a constant with the given name in mod. If inherit
is set, the lookup will also search the ancestors (and Object
if mod is a Module
).
The value of the constant is returned if a definition is found, otherwise a NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
This method will recursively look up constant names if a namespaced class name is provided. For example:
module Foo; class Bar; end end Object.const_get 'Foo::Bar'
The inherit
flag is respected on each lookup. For example:
module Foo class Bar VAL = 10 end class Baz < Bar; end end Object.const_get 'Foo::Baz::VAL' # => 10 Object.const_get 'Foo::Baz::VAL', false # => NameError
If the argument is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_get 'foobar' #=> NameError: wrong constant name foobar
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714 Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
If sym
or str
is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
Says whether mod or its ancestors have a constant with the given name:
Float.const_defined?(:EPSILON) #=> true, found in Float itself Float.const_defined?("String") #=> true, found in Object (ancestor) BasicObject.const_defined?(:Hash) #=> false
If mod is a Module
, additionally Object
and its ancestors are checked:
Math.const_defined?(:String) #=> true, found in Object
In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true
is returned directly without autoloading:
module Admin autoload :User, 'admin/user' end Admin.const_defined?(:User) #=> true
If the constant is not found the callback const_missing
is not called and the method returns false
.
If inherit
is false, the lookup only checks the constants in the receiver:
IO.const_defined?(:SYNC) #=> true, found in File::Constants (ancestor) IO.const_defined?(:SYNC, false) #=> false, not found in IO itself
In this case, the same logic for autoloading applies.
If the argument is not a valid constant name a NameError
is raised with the message “wrong constant name name”:
Hash.const_defined? 'foobar' #=> NameError: wrong constant name foobar
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:
def Foo.const_missing(name) name # return the constant name as Symbol end Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred
is assumed to be in file fred.rb
). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload
and Module#autoload
.
def Object.const_missing(name) @looked_for ||= {} str_name = name.to_s raise "Class not found: #{name}" if @looked_for[str_name] @looked_for[str_name] = 1 file = str_name.downcase require file klass = const_get(name) return klass if klass raise "Class not found: #{name}" end
Makes a list of existing constants public.
Makes a list of existing constants private.