Results for: "module_function"

Generate results and print them. (see ERB#result)

Returns true if the given ipaddr is in the range.

e.g.:

require 'ipaddr'
net1 = IPAddr.new("192.168.2.0/24")
net2 = IPAddr.new("192.168.2.100")
net3 = IPAddr.new("192.168.3.0")
p net1.include?(net2)     #=> true
p net1.include?(net3)     #=> false

Returns a network byte ordered string form of the IP address.

Returns a new ipaddr built by converting the IPv6 address into a native IPv4 address. If the IP address is not an IPv4-mapped or IPv4-compatible IPv6 address, returns self.

Returns a string containing a human-readable representation of the ipaddr. (“#<IPAddr: family:address/mask>”)

Log an UNKNOWN message. This will be printed no matter what the logger’s level is.

See info for more information.

provides a unified clone operation, for REXML::XPathParser to use across multiple Object types

Returns a string containing the representation of fix radix base (between 2 and 36).

12345.to_s       #=> "12345"
12345.to_s(2)    #=> "11000000111001"
12345.to_s(8)    #=> "30071"
12345.to_s(10)   #=> "12345"
12345.to_s(16)   #=> "3039"
12345.to_s(36)   #=> "9ix"

Creates a matrix where the diagonal elements are composed of values.

Matrix.diagonal(9, 5, -3)
  =>  9  0  0
      0  5  0
      0  0 -3

Creates an n by n identity matrix.

Matrix.identity(2)
  => 1 0
     0 1
No documentation available
No documentation available

Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).

Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
  => -108

Returns true if this is a diagonal matrix. Raises an error if matrix is not square.

Returns true if this is an hermitian matrix. Raises an error if matrix is not square.

Returns true if this is an orthogonal matrix Raises an error if matrix is not square.

Returns true if this is a unitary matrix Raises an error if matrix is not square.

Returns a clone of the matrix, so that the contents of each do not reference identical objects. There should be no good reason to do this since Matrices are immutable.

Returns a matrix with entries rounded to the given precision (see Float#round)

Returns the conjugate of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i   i  0
        1   2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
  => 1-2i  -i  0
        1   2  3
No documentation available

Returns an array containing matrices corresponding to the real and imaginary parts of the matrix

m.rect == [m.real, m.imag] # ==> true for all matrices m

Overrides Object#inspect

No documentation available

Returns a vector with entries rounded to the given precision (see Float#round)

Search took: 7ms  ·  Total Results: 3558