Results for: "Array.new"

Validates the Diffie-Hellman parameters associated with this instance. It checks whether a safe prime and a suitable generator are used. If this is not the case, false is returned.

Generates a private and public key unless a private key already exists. If this DH instance was generated from public DH parameters (e.g. by encoding the result of DH#public_key), then this method needs to be called first in order to generate the per-session keys before performing the actual key exchange.

Example

dh = OpenSSL::PKey::DH.new(2048)
public_key = dh.public_key #contains no private/public key yet
public_key.generate_key!
puts public_key.private? # => true

Sets the parameters for this SSL context to the values in params. The keys in params must be assignment methods on SSLContext.

If the verify_mode is not VERIFY_NONE and ca_file, ca_path and cert_store are not set then the system default certificate store is used.

See the OpenSSL documentation for EC_KEY_generate_key()

No documentation available
No documentation available
No documentation available
No documentation available

See the OpenSSL documentation for EC_GROUP_get0_generator()

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)

Returns a complex object which denotes the given polar form.

Complex.polar(3, 0)            #=> (3.0+0.0i)
Complex.polar(3, Math::PI/2)   #=> (1.836909530733566e-16+3.0i)
Complex.polar(3, Math::PI)     #=> (-3.0+3.673819061467132e-16i)
Complex.polar(3, -Math::PI/2)  #=> (1.836909530733566e-16-3.0i)

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]

Returns an array; [cmp.abs, cmp.arg].

Complex(1, 2).polar  #=> [2.23606797749979, 1.1071487177940904]

Returns the numerator.

    1   2       3+4i  <-  numerator
    - + -i  ->  ----
    2   3        6    <-  denominator

c = Complex('1/2+2/3i')  #=> ((1/2)+(2/3)*i)
n = c.numerator          #=> (3+4i)
d = c.denominator        #=> 6
n / d                    #=> ((1/2)+(2/3)*i)
Complex(Rational(n.real, d), Rational(n.imag, d))
                         #=> ((1/2)+(2/3)*i)

See denominator.

Returns the value as a rational if possible (the imaginary part should be exactly zero).

Complex(1.0/3, 0).rationalize  #=> (1/3)
Complex(1, 0.0).rationalize    # RangeError
Complex(1, 2).rationalize      # RangeError

See to_r.

Returns zero as a rational. The optional argument eps is always ignored.

Returns zero.

Returns 0 if the value is positive, pi otherwise.

Returns an array; [num, 0].

Returns an array; [num.abs, num.arg].

Returns true if num is less than 0.

Returns the numerator.

Returns the successor to str. The successor is calculated by incrementing characters starting from the rightmost alphanumeric (or the rightmost character if there are no alphanumerics) in the string. Incrementing a digit always results in another digit, and incrementing a letter results in another letter of the same case. Incrementing nonalphanumerics uses the underlying character set’s collating sequence.

If the increment generates a “carry,” the character to the left of it is incremented. This process repeats until there is no carry, adding an additional character if necessary.

"abcd".succ        #=> "abce"
"THX1138".succ     #=> "THX1139"
"<<koala>>".succ   #=> "<<koalb>>"
"1999zzz".succ     #=> "2000aaa"
"ZZZ9999".succ     #=> "AAAA0000"
"***".succ         #=> "**+"
Search took: 5ms  ·  Total Results: 2422