Results for: "fnmatch"

Returns collection of supported makers

Can I remove this method?

Simple deprecation method that deprecates name by wrapping it up in a dummy method. It warns on each call to the dummy method telling the user of repl (unless repl is :none) and the year/month that it is planned to go away.

Simple deprecation method that deprecates name by wrapping it up in a dummy method. It warns on each call to the dummy method telling the user of repl (unless repl is :none) and the year/month that it is planned to go away.

A Zlib::Inflate#inflate wrapper

Converts a the given str to a dateTime.iso8601 formatted date.

Raises an exception if the String isn’t in dateTime.iso8601 format.

See also, XMLRPC::DateTime

No documentation available
No documentation available
No documentation available

Same as Array#each, but passes the index of the element instead of the element itself.

An Enumerator is returned if no block is given.

a = [ "a", "b", "c" ]
a.each_index {|x| print x, " -- " }

produces:

0 -- 1 -- 2 --

Same as Array#each, but traverses self in reverse order.

a = [ "a", "b", "c" ]
a.reverse_each {|x| print x, " " }

produces:

c b a

Returns an array containing the elements in self corresponding to the given selector(s).

The selectors may be either integer indices or ranges.

See also Array#select.

a = %w{ a b c d e f }
a.values_at(1, 3, 5)          # => ["b", "d", "f"]
a.values_at(1, 3, 5, 7)       # => ["b", "d", "f", nil]
a.values_at(-1, -2, -2, -7)   # => ["f", "e", "e", nil]
a.values_at(4..6, 3...6)      # => ["e", "f", nil, "d", "e", "f"]

Deletes the element at the specified index, returning that element, or nil if the index is out of range.

See also Array#slice!

a = ["ant", "bat", "cat", "dog"]
a.delete_at(2)    #=> "cat"
a                 #=> ["ant", "bat", "dog"]
a.delete_at(99)   #=> nil

By using binary search, finds an index of a value from this array which meets the given condition in O(log n) where n is the size of the array.

It supports two modes, depending on the nature of the block and they are exactly the same as in the case of bsearch method with the only difference being that this method returns the index of the element instead of the element itself. For more details consult the documentation for bsearch.

Deserializes JSON string by converting Real value r, imaginary value i, to a Complex object.

Unicode Normalization

Returns a normalized form of str, using Unicode normalizations NFC, NFD, NFKC, or NFKD. The normalization form used is determined by form, which is any of the four values :nfc, :nfd, :nfkc, or :nfkd. The default is :nfc.

If the string is not in a Unicode Encoding, then an Exception is raised. In this context, ‘Unicode Encoding’ means any of UTF-8, UTF-16BE/LE, and UTF-32BE/LE, as well as GB18030, UCS_2BE, and UCS_4BE. Anything else than UTF-8 is implemented by converting to UTF-8, which makes it slower than UTF-8.

Examples

"a\u0300".unicode_normalize        #=> 'à' (same as "\u00E0")
"a\u0300".unicode_normalize(:nfc)  #=> 'à' (same as "\u00E0")
"\u00E0".unicode_normalize(:nfd)   #=> 'à' (same as "a\u0300")
"\xE0".force_encoding('ISO-8859-1').unicode_normalize(:nfd)
                                   #=> Encoding::CompatibilityError raised

Destructive version of String#unicode_normalize, doing Unicode normalization in place.

Checks whether str is in Unicode normalization form form, which is any of the four values :nfc, :nfd, :nfkc, or :nfkd. The default is :nfc.

If the string is not in a Unicode Encoding, then an Exception is raised. For details, see String#unicode_normalize.

Examples

"a\u0300".unicode_normalized?        #=> false
"a\u0300".unicode_normalized?(:nfd)  #=> true
"\u00E0".unicode_normalized?         #=> true
"\u00E0".unicode_normalized?(:nfd)   #=> false
"\xE0".force_encoding('ISO-8859-1').unicode_normalized?
                                     #=> Encoding::CompatibilityError raised

Splits str using the supplied parameter as the record separator ($/ by default), passing each substring in turn to the supplied block. If a zero-length record separator is supplied, the string is split into paragraphs delimited by multiple successive newlines.

If no block is given, an enumerator is returned instead.

print "Example one\n"
"hello\nworld".each_line {|s| p s}
print "Example two\n"
"hello\nworld".each_line('l') {|s| p s}
print "Example three\n"
"hello\n\n\nworld".each_line('') {|s| p s}

produces:

Example one
"hello\n"
"world"
Example two
"hel"
"l"
"o\nworl"
"d"
Example three
"hello\n\n\n"
"world"

Passes each byte in str to the given block, or returns an enumerator if no block is given.

"hello".each_byte {|c| print c, ' ' }

produces:

104 101 108 108 111

Passes the Integer ordinal of each character in str, also known as a codepoint when applied to Unicode strings to the given block.

If no block is given, an enumerator is returned instead.

"hello\u0639".each_codepoint {|c| print c, ' ' }

produces:

104 101 108 108 111 1593

Returns the next representable floating-point number.

Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.

Float::NAN.next_float is Float::NAN.

For example:

p 0.01.next_float  #=> 0.010000000000000002
p 1.0.next_float   #=> 1.0000000000000002
p 100.0.next_float #=> 100.00000000000001

p 0.01.next_float - 0.01   #=> 1.734723475976807e-18
p 1.0.next_float - 1.0     #=> 2.220446049250313e-16
p 100.0.next_float - 100.0 #=> 1.4210854715202004e-14

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
#=> 0x1.47ae147ae147bp-7 0.01
#   0x1.47ae147ae147cp-7 0.010000000000000002
#   0x1.47ae147ae147dp-7 0.010000000000000004
#   0x1.47ae147ae147ep-7 0.010000000000000005
#   0x1.47ae147ae147fp-7 0.010000000000000007
#   0x1.47ae147ae148p-7  0.010000000000000009
#   0x1.47ae147ae1481p-7 0.01000000000000001
#   0x1.47ae147ae1482p-7 0.010000000000000012
#   0x1.47ae147ae1483p-7 0.010000000000000014
#   0x1.47ae147ae1484p-7 0.010000000000000016
#   0x1.47ae147ae1485p-7 0.010000000000000018
#   0x1.47ae147ae1486p-7 0.01000000000000002
#   0x1.47ae147ae1487p-7 0.010000000000000021
#   0x1.47ae147ae1488p-7 0.010000000000000023
#   0x1.47ae147ae1489p-7 0.010000000000000024
#   0x1.47ae147ae148ap-7 0.010000000000000026
#   0x1.47ae147ae148bp-7 0.010000000000000028
#   0x1.47ae147ae148cp-7 0.01000000000000003
#   0x1.47ae147ae148dp-7 0.010000000000000031
#   0x1.47ae147ae148ep-7 0.010000000000000033

f = 0.0
100.times { f += 0.1 }
p f                            #=> 9.99999999999998       # should be 10.0 in the ideal world.
p 10-f                         #=> 1.9539925233402755e-14 # the floating-point error.
p(10.0.next_float-10)          #=> 1.7763568394002505e-15 # 1 ulp (units in the last place).
p((10-f)/(10.0.next_float-10)) #=> 11.0                   # the error is 11 ulp.
p((10-f)/(10*Float::EPSILON))  #=> 8.8                    # approximation of the above.
p "%a" % f                     #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.

Returns the previous representable floating-point number.

(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.

Float::NAN.prev_float is Float::NAN.

For example:

p 0.01.prev_float  #=> 0.009999999999999998
p 1.0.prev_float   #=> 0.9999999999999999
p 100.0.prev_float #=> 99.99999999999999

p 0.01 - 0.01.prev_float   #=> 1.734723475976807e-18
p 1.0 - 1.0.prev_float     #=> 1.1102230246251565e-16
p 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14

f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
#=> 0x1.47ae147ae147bp-7 0.01
#   0x1.47ae147ae147ap-7 0.009999999999999998
#   0x1.47ae147ae1479p-7 0.009999999999999997
#   0x1.47ae147ae1478p-7 0.009999999999999995
#   0x1.47ae147ae1477p-7 0.009999999999999993
#   0x1.47ae147ae1476p-7 0.009999999999999992
#   0x1.47ae147ae1475p-7 0.00999999999999999
#   0x1.47ae147ae1474p-7 0.009999999999999988
#   0x1.47ae147ae1473p-7 0.009999999999999986
#   0x1.47ae147ae1472p-7 0.009999999999999985
#   0x1.47ae147ae1471p-7 0.009999999999999983
#   0x1.47ae147ae147p-7  0.009999999999999981
#   0x1.47ae147ae146fp-7 0.00999999999999998
#   0x1.47ae147ae146ep-7 0.009999999999999978
#   0x1.47ae147ae146dp-7 0.009999999999999976
#   0x1.47ae147ae146cp-7 0.009999999999999974
#   0x1.47ae147ae146bp-7 0.009999999999999972
#   0x1.47ae147ae146ap-7 0.00999999999999997
#   0x1.47ae147ae1469p-7 0.009999999999999969
#   0x1.47ae147ae1468p-7 0.009999999999999967

Returns the path parameter passed to dir’s constructor.

d = Dir.new("..")
d.path   #=> ".."

Converts a pathname to an absolute pathname. Relative paths are referenced from the current working directory of the process unless dir_string is given, in which case it will be used as the starting point. The given pathname may start with a “~”, which expands to the process owner’s home directory (the environment variable HOME must be set correctly). “~user” expands to the named user’s home directory.

File.expand_path("~oracle/bin")           #=> "/home/oracle/bin"

A simple example of using dir_string is as follows.

File.expand_path("ruby", "/usr/bin")      #=> "/usr/bin/ruby"

A more complex example which also resolves parent directory is as follows. Suppose we are in bin/mygem and want the absolute path of lib/mygem.rb.

File.expand_path("../../lib/mygem.rb", __FILE__)
#=> ".../path/to/project/lib/mygem.rb"

So first it resolves the parent of __FILE__, that is bin/, then go to the parent, the root of the project and appends lib/mygem.rb.

Search took: 5ms  ·  Total Results: 2025