Results for: "strip"

Top level install helper method. Allows you to install gems interactively:

% irb
>> Gem.install "minitest"
Fetching: minitest-3.0.1.gem (100%)
=> [#<Gem::Specification:0x1013b4528 @name="minitest", ...>]

Get the default RubyGems API host. This is normally https://rubygems.org.

Set the default RubyGems API host.

Returns the result of converting the serialized data in source into a Ruby object (possibly with associated subordinate objects). source may be either an instance of IO or an object that responds to to_str. If proc is specified, each object will be passed to the proc, as the object is being deserialized.

Never pass untrusted data (including user supplied input) to this method. Please see the overview for further details.

Gets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

resource indicates the kind of resource to limit. It is specified as a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. See Process.setrlimit for details.

cur_limit and max_limit may be Process::RLIM_INFINITY, Process::RLIM_SAVED_MAX or Process::RLIM_SAVED_CUR. See Process.setrlimit and the system getrlimit(2) manual for details.

Sets the resource limit of the process. cur_limit means current (soft) limit and max_limit means maximum (hard) limit.

If max_limit is not given, cur_limit is used.

resource indicates the kind of resource to limit. It should be a symbol such as :CORE, a string such as "CORE" or a constant such as Process::RLIMIT_CORE. The available resources are OS dependent. Ruby may support following resources.

AS

total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)

CORE

core size (bytes) (SUSv3)

CPU

CPU time (seconds) (SUSv3)

DATA

data segment (bytes) (SUSv3)

FSIZE

file size (bytes) (SUSv3)

MEMLOCK

total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)

MSGQUEUE

allocation for POSIX message queues (bytes) (GNU/Linux)

NICE

ceiling on process’s nice(2) value (number) (GNU/Linux)

NOFILE

file descriptors (number) (SUSv3)

NPROC

number of processes for the user (number) (4.4BSD, GNU/Linux)

RSS

resident memory size (bytes) (4.2BSD, GNU/Linux)

RTPRIO

ceiling on the process’s real-time priority (number) (GNU/Linux)

RTTIME

CPU time for real-time process (us) (GNU/Linux)

SBSIZE

all socket buffers (bytes) (NetBSD, FreeBSD)

SIGPENDING

number of queued signals allowed (signals) (GNU/Linux)

STACK

stack size (bytes) (SUSv3)

cur_limit and max_limit may be :INFINITY, "INFINITY" or Process::RLIM_INFINITY, which means that the resource is not limited. They may be Process::RLIM_SAVED_MAX, Process::RLIM_SAVED_CUR and corresponding symbols and strings too. See system setrlimit(2) manual for details.

The following example raises the soft limit of core size to the hard limit to try to make core dump possible.

Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])

Specifies the handling of signals. The first parameter is a signal name (a string such as “SIGALRM”, “SIGUSR1”, and so on) or a signal number. The characters “SIG” may be omitted from the signal name. The command or block specifies code to be run when the signal is raised. If the command is the string “IGNORE” or “SIG_IGN”, the signal will be ignored. If the command is “DEFAULT” or “SIG_DFL”, the Ruby’s default handler will be invoked. If the command is “EXIT”, the script will be terminated by the signal. If the command is “SYSTEM_DEFAULT”, the operating system’s default handler will be invoked. Otherwise, the given command or block will be run. The special signal name “EXIT” or signal number zero will be invoked just prior to program termination. trap returns the previous handler for the given signal.

Signal.trap(0, proc { puts "Terminating: #{$$}" })
Signal.trap("CLD")  { puts "Child died" }
fork && Process.wait

produces:

Terminating: 27461
Child died
Terminating: 27460

Returns a list of signal names mapped to the corresponding underlying signal numbers.

Signal.list   #=> {"EXIT"=>0, "HUP"=>1, "INT"=>2, "QUIT"=>3, "ILL"=>4, "TRAP"=>5, "IOT"=>6, "ABRT"=>6, "FPE"=>8, "KILL"=>9, "BUS"=>7, "SEGV"=>11, "SYS"=>31, "PIPE"=>13, "ALRM"=>14, "TERM"=>15, "URG"=>23, "STOP"=>19, "TSTP"=>20, "CONT"=>18, "CHLD"=>17, "CLD"=>17, "TTIN"=>21, "TTOU"=>22, "IO"=>29, "XCPU"=>24, "XFSZ"=>25, "VTALRM"=>26, "PROF"=>27, "WINCH"=>28, "USR1"=>10, "USR2"=>12, "PWR"=>30, "POLL"=>29}
No documentation available

Iterates over strongly connected component in the subgraph reachable from node.

Return value is unspecified.

each_strongly_connected_component_from doesn’t call tsort_each_node.

class G
  include TSort
  def initialize(g)
    @g = g
  end
  def tsort_each_child(n, &b) @g[n].each(&b) end
  def tsort_each_node(&b) @g.each_key(&b) end
end

graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
graph.each_strongly_connected_component_from(2) {|scc| p scc }
#=> [4]
#   [2]

graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
graph.each_strongly_connected_component_from(2) {|scc| p scc }
#=> [4]
#   [2, 3]

Iterates over strongly connected components in a graph. The graph is represented by node and each_child.

node is the first node. each_child should have call method which takes a node argument and yields for each child node.

Return value is unspecified.

TSort.each_strongly_connected_component_from is a class method and it doesn’t need a class to represent a graph which includes TSort.

graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
each_child = lambda {|n, &b| graph[n].each(&b) }
TSort.each_strongly_connected_component_from(1, each_child) {|scc|
  p scc
}
#=> [4]
#   [2, 3]
#   [1]
No documentation available
No documentation available

Iterates through the child elements, yielding for each Element that has a particular attribute set.

key

the name of the attribute to search for

value

the value of the attribute

max

(optional) causes this method to return after yielding for this number of matching children

name

(optional) if supplied, this is an XPath that filters the children to check.

doc = Document.new "<a><b @id='1'/><c @id='2'/><d @id='1'/><e/></a>"
# Yields b, c, d
doc.root.each_element_with_attribute( 'id' ) {|e| p e}
# Yields b, d
doc.root.each_element_with_attribute( 'id', '1' ) {|e| p e}
# Yields b
doc.root.each_element_with_attribute( 'id', '1', 1 ) {|e| p e}
# Yields d
doc.root.each_element_with_attribute( 'id', '1', 0, 'd' ) {|e| p e}
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
Search took: 3ms  ·  Total Results: 1744