Results for: "minmax"

The Readline module provides interface for GNU Readline. This module defines a number of methods to facilitate completion and accesses input history from the Ruby interpreter. This module supported Edit Line(libedit) too. libedit is compatible with GNU Readline.

GNU Readline

www.gnu.org/directory/readline.html

libedit

www.thrysoee.dk/editline/

Reads one inputted line with line edit by Readline.readline method. At this time, the facilitatation completion and the key bind like Emacs can be operated like GNU Readline.

require "readline"
while buf = Readline.readline("> ", true)
  p buf
end

The content that the user input can be recorded to the history. The history can be accessed by Readline::HISTORY constant.

require "readline"
while buf = Readline.readline("> ", true)
  p Readline::HISTORY.to_a
  print("-> ", buf, "\n")
end

Documented by Kouji Takao <kouji dot takao at gmail dot com>.

The Benchmark module provides methods to measure and report the time used to execute Ruby code.

The result:

              user     system      total        real
for:      1.010000   0.000000   1.010000 (  1.015688)
times:    1.000000   0.000000   1.000000 (  1.003611)
upto:     1.030000   0.000000   1.030000 (  1.028098)

Trigonometric and transcendental functions for complex numbers.

CMath is a library that provides trigonometric and transcendental functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They would rather have Math.sqrt(-1) raise an exception than return a complex number.

For more information you can see Complex class.

Usage

To start using this library, simply require cmath library:

require "cmath"

Helper module for easily defining exceptions with predefined messages.

Usage

1.

class Foo
  extend Exception2MessageMapper
  def_e2message ExistingExceptionClass, "message..."
  def_exception :NewExceptionClass, "message..."[, superclass]
  ...
end

2.

module Error
  extend Exception2MessageMapper
  def_e2message ExistingExceptionClass, "message..."
  def_exception :NewExceptionClass, "message..."[, superclass]
  ...
end
class Foo
  include Error
  ...
end

foo = Foo.new
foo.Fail ....

3.

module Error
  extend Exception2MessageMapper
  def_e2message ExistingExceptionClass, "message..."
  def_exception :NewExceptionClass, "message..."[, superclass]
  ...
end
class Foo
  extend Exception2MessageMapper
  include Error
  ...
end

Foo.Fail NewExceptionClass, arg...
Foo.Fail ExistingExceptionClass, arg...

The Find module supports the top-down traversal of a set of file paths.

For example, to total the size of all files under your home directory, ignoring anything in a “dot” directory (e.g. $HOME/.ssh):

require 'find'

total_size = 0

Find.find(ENV["HOME"]) do |path|
  if FileTest.directory?(path)
    if File.basename(path)[0] == ?.
      Find.prune       # Don't look any further into this directory.
    else
      next
    end
  else
    total_size += FileTest.size(path)
  end
end

SingleForwardable can be used to setup delegation at the object level as well.

printer = String.new
printer.extend SingleForwardable        # prepare object for delegation
printer.def_delegator "STDOUT", "puts"  # add delegation for STDOUT.puts()
printer.puts "Howdy!"

Also, SingleForwardable can be used to set up delegation for a Class or Module.

class Implementation
  def self.service
    puts "serviced!"
  end
end

module Facade
  extend SingleForwardable
  def_delegator :Implementation, :service
end

Facade.service #=> serviced!

If you want to use both Forwardable and SingleForwardable, you can use methods def_instance_delegator and def_single_delegator, etc.

When mathn is required, the Math module changes as follows:

Standard Math module behaviour:

Math.sqrt(4/9)     # => 0.0
Math.sqrt(4.0/9.0) # => 0.666666666666667
Math.sqrt(- 4/9)   # => Errno::EDOM: Numerical argument out of domain - sqrt

After require ‘mathn’, this is changed to:

require 'mathn'
Math.sqrt(4/9)      # => 2/3
Math.sqrt(4.0/9.0)  # => 0.666666666666667
Math.sqrt(- 4/9)    # => Complex(0, 2/3)

The Math module contains module functions for basic trigonometric and transcendental functions. See class Float for a list of constants that define Ruby’s floating point accuracy.

Domains and codomains are given only for real (not complex) numbers.

A module to implement the Linda distributed computing paradigm in Ruby.

Rinda is part of DRb (dRuby).

Example(s)

See the sample/drb/ directory in the Ruby distribution, from 1.8.2 onwards.

The Singleton module implements the Singleton pattern.

Usage

To use Singleton, include the module in your class.

class Klass
   include Singleton
   # ...
end

This ensures that only one instance of Klass can be created.

a,b  = Klass.instance, Klass.instance

a == b
# => true

Klass.new
# => NoMethodError - new is private ...

The instance is created at upon the first call of Klass.instance().

class OtherKlass
  include Singleton
  # ...
end

ObjectSpace.each_object(OtherKlass){}
# => 0

OtherKlass.instance
ObjectSpace.each_object(OtherKlass){}
# => 1

This behavior is preserved under inheritance and cloning.

Implementation

This above is achieved by:

Singleton and Marshal

By default Singleton’s _dump(depth) returns the empty string. Marshalling by default will strip state information, e.g. instance variables and taint state, from the instance. Classes using Singleton can provide custom _load(str) and _dump(depth) methods to retain some of the previous state of the instance.

require 'singleton'

class Example
  include Singleton
  attr_accessor :keep, :strip
  def _dump(depth)
    # this strips the @strip information from the instance
    Marshal.dump(@keep, depth)
  end

  def self._load(str)
    instance.keep = Marshal.load(str)
    instance
  end
end

a = Example.instance
a.keep = "keep this"
a.strip = "get rid of this"
a.taint

stored_state = Marshal.dump(a)

a.keep = nil
a.strip = nil
b = Marshal.load(stored_state)
p a == b  #  => true
p a.keep  #  => "keep this"
p a.strip #  => nil

automatically generated by template/unicode_norm_gen.tmpl

The marshaling library converts collections of Ruby objects into a byte stream, allowing them to be stored outside the currently active script. This data may subsequently be read and the original objects reconstituted.

Marshaled data has major and minor version numbers stored along with the object information. In normal use, marshaling can only load data written with the same major version number and an equal or lower minor version number. If Ruby’s “verbose” flag is set (normally using -d, -v, -w, or –verbose) the major and minor numbers must match exactly. Marshal versioning is independent of Ruby’s version numbers. You can extract the version by reading the first two bytes of marshaled data.

str = Marshal.dump("thing")
RUBY_VERSION   #=> "1.9.0"
str[0].ord     #=> 4
str[1].ord     #=> 8

Some objects cannot be dumped: if the objects to be dumped include bindings, procedure or method objects, instances of class IO, or singleton objects, a TypeError will be raised.

If your class has special serialization needs (for example, if you want to serialize in some specific format), or if it contains objects that would otherwise not be serializable, you can implement your own serialization strategy.

There are two methods of doing this, your object can define either marshal_dump and marshal_load or _dump and _load. marshal_dump will take precedence over _dump if both are defined. marshal_dump may result in smaller Marshal strings.

Security considerations

By design, Marshal.load can deserialize almost any class loaded into the Ruby process. In many cases this can lead to remote code execution if the Marshal data is loaded from an untrusted source.

As a result, Marshal.load is not suitable as a general purpose serialization format and you should never unmarshal user supplied input or other untrusted data.

If you need to deserialize untrusted data, use JSON or another serialization format that is only able to load simple, ‘primitive’ types such as String, Array, Hash, etc. Never allow user input to specify arbitrary types to deserialize into.

marshal_dump and marshal_load

When dumping an object the method marshal_dump will be called. marshal_dump must return a result containing the information necessary for marshal_load to reconstitute the object. The result can be any object.

When loading an object dumped using marshal_dump the object is first allocated then marshal_load is called with the result from marshal_dump. marshal_load must recreate the object from the information in the result.

Example:

class MyObj
  def initialize name, version, data
    @name    = name
    @version = version
    @data    = data
  end

  def marshal_dump
    [@name, @version]
  end

  def marshal_load array
    @name, @version = array
  end
end

_dump and _load

Use _dump and _load when you need to allocate the object you’re restoring yourself.

When dumping an object the instance method _dump is called with an Integer which indicates the maximum depth of objects to dump (a value of -1 implies that you should disable depth checking). _dump must return a String containing the information necessary to reconstitute the object.

The class method _load should take a String and use it to return an object of the same class.

Example:

class MyObj
  def initialize name, version, data
    @name    = name
    @version = version
    @data    = data
  end

  def _dump level
    [@name, @version].join ':'
  end

  def self._load args
    new(*args.split(':'))
  end
end

Since Marshal.dump outputs a string you can have _dump return a Marshal string which is Marshal.loaded in _load for complex objects.

WIN32OLE_EVENT objects controls OLE event.

WIN32OLE_METHOD objects represent OLE method information.

WIN32OLE_PARAM objects represent param information of the OLE method.

WIN32OLE_RECORD objects represents VT_RECORD OLE variant. Win32OLE returns WIN32OLE_RECORD object if the result value of invoking OLE methods.

If COM server in VB.NET ComServer project is the following:

Imports System.Runtime.InteropServices
Public Class ComClass
    Public Structure Book
        <MarshalAs(UnmanagedType.BStr)> _
        Public title As String
        Public cost As Integer
    End Structure
    Public Function getBook() As Book
        Dim book As New Book
        book.title = "The Ruby Book"
        book.cost = 20
        Return book
    End Function
End Class

then, you can retrieve getBook return value from the following Ruby script:

require 'win32ole'
obj = WIN32OLE.new('ComServer.ComClass')
book = obj.getBook
book.class # => WIN32OLE_RECORD
book.title # => "The Ruby Book"
book.cost  # => 20

WIN32OLE_TYPE objects represent OLE type libarary information.

WIN32OLE_TYPELIB objects represent OLE tyblib information.

WIN32OLE_VARIABLE objects represent OLE variable information.

WIN32OLE_VARIANT objects represents OLE variant.

Win32OLE converts Ruby object into OLE variant automatically when invoking OLE methods. If OLE method requires the argument which is different from the variant by automatic conversion of Win32OLE, you can convert the specfied variant type by using WIN32OLE_VARIANT class.

param = WIN32OLE_VARIANT.new(10, WIN32OLE::VARIANT::VT_R4)
oleobj.method(param)

WIN32OLE_VARIANT does not support VT_RECORD variant. Use WIN32OLE_RECORD class instead of WIN32OLE_VARIANT if the VT_RECORD variant is needed.

No documentation available
No documentation available
No documentation available

Fiddle::Pointer is a class to handle C pointers

This exception is raised if the nesting of parsed data structures is too deep.

This class is used as a return value from ObjectSpace::reachable_objects_from.

When ObjectSpace::reachable_objects_from returns an object with references to an internal object, an instance of this class is returned.

You can use the type method to check the type of the internal object.

Search took: 10ms  ·  Total Results: 1824