Returns true for IPv6 link local address (ff80::/10). It returns false otherwise.
Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an accepted TCPSocket
for the incoming connection.
require 'socket' serv = TCPServer.new(2202) begin # emulate blocking accept sock = serv.accept_nonblock rescue IO::WaitReadable, Errno::EINTR IO.select([serv]) retry end # sock is an accepted socket.
Refer to Socket#accept
for the exceptions that may be thrown if the call to TCPServer#accept_nonblock
fails.
TCPServer#accept_nonblock
may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED
, Errno::EPROTO
, it is extended by IO::WaitReadable
. So IO::WaitReadable
can be used to rescue the exceptions for retrying accept_nonblock.
By specifying ‘exception: false`, the options hash allows you to indicate that accept_nonblock
should not raise an IO::WaitReadable
exception, but return the symbol :wait_readable instead.
Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an accepted UNIXSocket
for the incoming connection.
require 'socket' serv = UNIXServer.new("/tmp/sock") begin # emulate blocking accept sock = serv.accept_nonblock rescue IO::WaitReadable, Errno::EINTR IO.select([serv]) retry end # sock is an accepted socket.
Refer to Socket#accept
for the exceptions that may be thrown if the call to UNIXServer#accept_nonblock
fails.
UNIXServer#accept_nonblock
may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED
or Errno::EPROTO
, it is extended by IO::WaitReadable
. So IO::WaitReadable
can be used to rescue the exceptions for retrying accept_nonblock.
By specifying ‘exception: false`, the options hash allows you to indicate that accept_nonblock
should not raise an IO::WaitReadable
exception, but return the symbol :wait_readable instead.
Duplicates a StringScanner
object.
Returns the WIN32OLE_TYPELIB
object. The object represents the type library which contains the WIN32OLE
object.
excel = WIN32OLE.new('Excel.Application') tlib = excel.ole_typelib puts tlib.name # -> 'Microsoft Excel 9.0 Object Library'
Returns event interface name if the method is event.
tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Workbook') method = WIN32OLE_METHOD.new(tobj, 'SheetActivate') puts method.event_interface # => WorkbookEvents
Returns the WIN32OLE_TYPELIB
object which is including the WIN32OLE_TYPE
object. If it is not found, then returns nil.
tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Worksheet') puts tobj.ole_typelib # => 'Microsoft Excel 9.0 Object Library'
Returns library name. If the method fails to access library name, WIN32OLERuntimeError
is raised.
tlib = WIN32OLE_TYPELIB.new('Microsoft Excel 9.0 Object Library') tlib.library_name # => Excel
Evaluates a string containing Ruby source code, or the given block, within the context of the receiver (obj). In order to set the context, the variable self
is set to obj while the code is executing, giving the code access to obj’s instance variables and private methods.
When instance_eval
is given a block, obj is also passed in as the block’s only argument.
When instance_eval
is given a String
, the optional second and third parameters supply a filename and starting line number that are used when reporting compilation errors.
class KlassWithSecret def initialize @secret = 99 end private def the_secret "Ssssh! The secret is #{@secret}." end end k = KlassWithSecret.new k.instance_eval { @secret } #=> 99 k.instance_eval { the_secret } #=> "Ssssh! The secret is 99." k.instance_eval {|obj| obj == self } #=> true
Executes the given block within the context of the receiver (obj). In order to set the context, the variable self
is set to obj while the code is executing, giving the code access to obj’s instance variables. Arguments are passed as block parameters.
class KlassWithSecret def initialize @secret = 99 end end k = KlassWithSecret.new k.instance_exec(5) {|x| @secret+x } #=> 104
Return the accept character set for all new CGI
instances.
This method is a shortcut for converting a single row (Array) into a CSV
String.
The options
parameter can be anything CSV::new()
understands. This method understands an additional :encoding
parameter to set the base Encoding
for the output. This method will try to guess your Encoding
from the first non-nil
field in row
, if possible, but you may need to use this parameter as a backup plan.
The :row_sep
option
defaults to $INPUT_RECORD_SEPARATOR
($/
) when calling this method.
This method is a shortcut for converting a single line of a CSV
String into an Array. Note that if line
contains multiple rows, anything beyond the first row is ignored.
The options
parameter can be anything CSV::new()
understands.
Returns true
if all output fields are quoted. See CSV::new
for details.
Returns the Laplace expansion along given row or column.
Matrix[[7,6], [3,9]].laplace_expansion(column: 1) => 45 Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0) => Vector[3, -2]
Outputs obj
to out
like PP.pp
but with no indent and newline.
PP.singleline_pp
returns out
.
This is similar to PrettyPrint::format
but the result has no breaks.
maxwidth
, newline
and genspace
are ignored.
The invocation of breakable
in the block doesn’t break a line and is treated as just an invocation of text
.
List of options that will be supplied to RDoc
Dup internal hash.