Returns the Julian day number denoting the day of calendar reform.
Date.new(2001,2,3).start #=> 2299161.0 Date.new(2001,2,3,Date::GREGORIAN).start #=> -Infinity
Parses the given representation of date and time, and creates a date object. This method does not function as a validator.
If the optional second argument is true and the detected year is in the range “00” to “99”, makes it full.
DateTime.parse('2001-02-03T04:05:06+07:00') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.parse('20010203T040506+0700') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.parse('3rd Feb 2001 04:05:06 PM') #=> #<DateTime: 2001-02-03T16:05:06+00:00 ...>
Parses date
using Date._parse
and converts it to a Time
object.
If a block is given, the year described in date
is converted by the block. For example:
Time.parse(...) {|y| 0 <= y && y < 100 ? (y >= 69 ? y + 1900 : y + 2000) : y}
If the upper components of the given time are broken or missing, they are supplied with those of now
. For the lower components, the minimum values (1 or 0) are assumed if broken or missing. For example:
# Suppose it is "Thu Nov 29 14:33:20 2001" now and # your time zone is EST which is GMT-5. now = Time.parse("Thu Nov 29 14:33:20 2001") Time.parse("16:30", now) #=> 2001-11-29 16:30:00 -0500 Time.parse("7/23", now) #=> 2001-07-23 00:00:00 -0500 Time.parse("Aug 31", now) #=> 2001-08-31 00:00:00 -0500 Time.parse("Aug 2000", now) #=> 2000-08-01 00:00:00 -0500
Since there are numerous conflicts among locally defined time zone abbreviations all over the world, this method is not intended to understand all of them. For example, the abbreviation “CST” is used variously as:
-06:00 in America/Chicago, -05:00 in America/Havana, +08:00 in Asia/Harbin, +09:30 in Australia/Darwin, +10:30 in Australia/Adelaide, etc.
Based on this fact, this method only understands the time zone abbreviations described in RFC 822 and the system time zone, in the order named. (i.e. a definition in RFC 822 overrides the system time zone definition.) The system time zone is taken from Time.local(year, 1, 1).zone
and Time.local(year, 7, 1).zone
. If the extracted time zone abbreviation does not match any of them, it is ignored and the given time is regarded as a local time.
ArgumentError
is raised if Date._parse
cannot extract information from date
or if the Time
class cannot represent specified date.
This method can be used as a fail-safe for other parsing methods as:
Time.rfc2822(date) rescue Time.parse(date) Time.httpdate(date) rescue Time.parse(date) Time.xmlschema(date) rescue Time.parse(date)
A failure of Time.parse
should be checked, though.
You must require ‘time’ to use this method.
Returns the day of the month (1..n) for time.
t = Time.now #=> 2007-11-19 08:27:03 -0600 t.day #=> 19 t.mday #=> 19
Returns the day of the month (1..n) for time.
t = Time.now #=> 2007-11-19 08:27:03 -0600 t.day #=> 19 t.mday #=> 19
Returns the year for time (including the century).
t = Time.now #=> 2007-11-19 08:27:51 -0600 t.year #=> 2007
Returns an integer representing the day of the week, 0..6, with Sunday == 0.
t = Time.now #=> 2007-11-20 02:35:35 -0600 t.wday #=> 2 t.sunday? #=> false t.monday? #=> false t.tuesday? #=> true t.wednesday? #=> false t.thursday? #=> false t.friday? #=> false t.saturday? #=> false
Returns an integer representing the day of the year, 1..366.
t = Time.now #=> 2007-11-19 08:32:31 -0600 t.yday #=> 323
Returns true
if time represents Sunday.
t = Time.local(1990, 4, 1) #=> 1990-04-01 00:00:00 -0600 t.sunday? #=> true
Returns true
if time represents Monday.
t = Time.local(2003, 8, 4) #=> 2003-08-04 00:00:00 -0500 p t.monday? #=> true
Returns true
if time represents Tuesday.
t = Time.local(1991, 2, 19) #=> 1991-02-19 00:00:00 -0600 p t.tuesday? #=> true
Returns true
if time represents Wednesday.
t = Time.local(1993, 2, 24) #=> 1993-02-24 00:00:00 -0600 p t.wednesday? #=> true
Returns true
if time represents Thursday.
t = Time.local(1995, 12, 21) #=> 1995-12-21 00:00:00 -0600 p t.thursday? #=> true
Returns true
if time represents Friday.
t = Time.local(1987, 12, 18) #=> 1987-12-18 00:00:00 -0600 t.friday? #=> true
Returns true
if time represents Saturday.
t = Time.local(2006, 6, 10) #=> 2006-06-10 00:00:00 -0500 t.saturday? #=> true
Deletes all data from the database.
Yields self
within raw mode.
STDIN.raw(&:gets)
will read and return a line without echo back and line editing.
You must require ‘io/console’ to use this method.
Enables raw mode.
If the terminal mode needs to be back, use io.raw { … }.
You must require ‘io/console’ to use this method.
This is a deprecated alias for each_char
.
Reads at most maxlen bytes from the I/O stream. It blocks only if ios has no data immediately available. It doesn’t block if some data available.
If the optional outbuf argument is present, it must reference a String, which will receive the data. The outbuf will contain only the received data after the method call even if it is not empty at the beginning.
It raises EOFError
on end of file.
readpartial is designed for streams such as pipe, socket, tty, etc. It blocks only when no data immediately available. This means that it blocks only when following all conditions hold.
the byte buffer in the IO
object is empty.
the content of the stream is empty.
the stream is not reached to EOF.
When readpartial blocks, it waits data or EOF on the stream. If some data is reached, readpartial returns with the data. If EOF is reached, readpartial raises EOFError
.
When readpartial doesn’t blocks, it returns or raises immediately. If the byte buffer is not empty, it returns the data in the buffer. Otherwise if the stream has some content, it returns the data in the stream. Otherwise if the stream is reached to EOF, it raises EOFError
.
r, w = IO.pipe # buffer pipe content w << "abc" # "" "abc". r.readpartial(4096) #=> "abc" "" "" r.readpartial(4096) # blocks because buffer and pipe is empty. r, w = IO.pipe # buffer pipe content w << "abc" # "" "abc" w.close # "" "abc" EOF r.readpartial(4096) #=> "abc" "" EOF r.readpartial(4096) # raises EOFError r, w = IO.pipe # buffer pipe content w << "abc\ndef\n" # "" "abc\ndef\n" r.gets #=> "abc\n" "def\n" "" w << "ghi\n" # "def\n" "ghi\n" r.readpartial(4096) #=> "def\n" "" "ghi\n" r.readpartial(4096) #=> "ghi\n" "" ""
Note that readpartial behaves similar to sysread. The differences are:
If the byte buffer is not empty, read from the byte buffer instead of “sysread for buffered IO
(IOError
)”.
It doesn’t cause Errno::EWOULDBLOCK and Errno::EINTR. When readpartial meets EWOULDBLOCK and EINTR by read system call, readpartial retry the system call.
The latter means that readpartial is nonblocking-flag insensitive. It blocks on the situation IO#sysread
causes Errno::EWOULDBLOCK as if the fd is blocking mode.
Reads a one-character string from ios. Raises an EOFError
on end of file.
f = File.new("testfile") f.readchar #=> "h" f.readchar #=> "e"
Removes all the key-value pairs within gdbm.
By using binary search, finds a value in range which meets the given condition in O(log n) where n is the size of the range.
You can use this method in two use cases: a find-minimum mode and a find-any mode. In either case, the elements of the range must be monotone (or sorted) with respect to the block.
In find-minimum mode (this is a good choice for typical use case), the block must return true or false, and there must be a value x so that:
the block returns false for any value which is less than x, and
the block returns true for any value which is greater than or equal to x.
If x is within the range, this method returns the value x. Otherwise, it returns nil.
ary = [0, 4, 7, 10, 12] (0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1 (0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2 (0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3 (0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil (0.0...Float::INFINITY).bsearch {|x| Math.log(x) >= 0 } #=> 1.0
In find-any mode (this behaves like libc’s bsearch(3)), the block must return a number, and there must be two values x and y (x <= y) so that:
the block returns a positive number for v if v < x,
the block returns zero for v if x <= v < y, and
the block returns a negative number for v if y <= v.
This method returns any value which is within the intersection of the given range and x…y (if any). If there is no value that satisfies the condition, it returns nil.
ary = [0, 100, 100, 100, 200] (0..4).bsearch {|i| 100 - ary[i] } #=> 1, 2 or 3 (0..4).bsearch {|i| 300 - ary[i] } #=> nil (0..4).bsearch {|i| 50 - ary[i] } #=> nil
You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.