Results for: "minmax"

Deletes the named files, returning the number of names passed as arguments. Raises an exception on any error. See also Dir::rmdir.

Returns the current umask value for this process. If the optional argument is given, set the umask to that value and return the previous value. Umask values are subtracted from the default permissions, so a umask of 0222 would make a file read-only for everyone.

File.umask(0006)   #=> 18
File.umask         #=> 6

Returns a new string formed by joining the strings using File::SEPARATOR.

File.join("usr", "mail", "gumby")   #=> "usr/mail/gumby"

Returns true if the named file is a symbolic link.

Returns a string which represents the encoding for programmers.

Encoding::UTF_8.inspect       #=> "#<Encoding:UTF-8>"
Encoding::ISO_2022_JP.inspect #=> "#<Encoding:ISO-2022-JP (dummy)>"

Search the encoding with specified name. name should be a string.

Encoding.find("US-ASCII")  #=> #<Encoding:US-ASCII>

Names which this method accept are encoding names and aliases including following special aliases

“external”

default external encoding

“internal”

default internal encoding

“locale”

locale encoding

“filesystem”

filesystem encoding

An ArgumentError is raised when no encoding with name. Only Encoding.find("internal") however returns nil when no encoding named “internal”, in other words, when Ruby has no default internal encoding.

Rewinds the enumeration sequence to the beginning.

If the enclosed object responds to a “rewind” method, it is called.

Creates a printable version of e.

Mark the object as tainted.

Objects that are marked as tainted will be restricted from various built-in methods. This is to prevent insecure data, such as command-line arguments or strings read from Kernel#gets, from inadvertently compromising the user’s system.

To check whether an object is tainted, use tainted?.

You should only untaint a tainted object if your code has inspected it and determined that it is safe. To do so use untaint.

Returns true if the object is tainted.

See taint for more information.

Removes the tainted mark from the object.

See taint for more information.

Returns a string containing a human-readable representation of obj. The default inspect shows the object’s class name, an encoding of the object id, and a list of the instance variables and their values (by calling inspect on each of them). User defined classes should override this method to provide a better representation of obj. When overriding this method, it should return a string whose encoding is compatible with the default external encoding.

[ 1, 2, 3..4, 'five' ].inspect   #=> "[1, 2, 3..4, \"five\"]"
Time.new.inspect                 #=> "2008-03-08 19:43:39 +0900"

class Foo
end
Foo.new.inspect                  #=> "#<Foo:0x0300c868>"

class Bar
  def initialize
    @bar = 1
  end
end
Bar.new.inspect                  #=> "#<Bar:0x0300c868 @bar=1>"

Return this exception’s class name and message

Invokes Module.append_features on each parameter in reverse order.

Refine klass in the receiver.

Returns an overlaid module.

Import class refinements from module into the current class or module definition.

Returns the list of Modules nested at the point of call.

module M1
  module M2
    $a = Module.nesting
  end
end
$a           #=> [M1::M2, M1]
$a[0].name   #=> "M1::M2"

Callback invoked whenever the receiver is included in another module or class. This should be used in preference to Module.append_features if your code wants to perform some action when a module is included in another.

module A
  def A.included(mod)
    puts "#{self} included in #{mod}"
  end
end
module Enumerable
  include A
end
 # => prints "A included in Enumerable"

Returns true if module is included in mod or one of mod’s ancestors.

module A
end
class B
  include A
end
class C < B
end
B.include?(A)   #=> true
C.include?(A)   #=> true
A.include?(A)   #=> false

Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we’re attached to as well.

Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.

Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:

BigDecimal.new("1234.5678").inspect
  #=> "#<BigDecimal:b7ea1130,'0.12345678E4',8(12)>"

The first part is the address, the second is the value as a string, and the final part ss(mm) is the current number of significant digits and the maximum number of significant digits, respectively.

Returns True if the value is finite (not NaN or infinite).

Since int is already an Integer, this always returns true.

Returns the value as a string for inspection.

Rational(2).inspect      #=> "(2/1)"
Rational(-8, 6).inspect  #=> "(-4/3)"
Rational('1/2').inspect  #=> "(1/2)"
Search took: 4ms  ·  Total Results: 1824