Results for: "module_function"

IO

Expect library adds the IO instance method expect, which does similar act to tcl’s expect extension.

In order to use this method, you must require expect:

require 'expect'

Please see expect for usage.

The IO class is the basis for all input and output in Ruby. An I/O stream may be duplexed (that is, bidirectional), and so may use more than one native operating system stream.

Many of the examples in this section use the File class, the only standard subclass of IO. The two classes are closely associated. Like the File class, the Socket library subclasses from IO (such as TCPSocket or UDPSocket).

The Kernel#open method can create an IO (or File) object for these types of arguments:

The IO may be opened with different file modes (read-only, write-only) and encodings for proper conversion. See IO.new for these options. See Kernel#open for details of the various command formats described above.

IO.popen, the Open3 library, or Process#spawn may also be used to communicate with subprocesses through an IO.

Ruby will convert pathnames between different operating system conventions if possible. For instance, on a Windows system the filename "/gumby/ruby/test.rb" will be opened as "\gumby\ruby\test.rb". When specifying a Windows-style filename in a Ruby string, remember to escape the backslashes:

"c:\\gumby\\ruby\\test.rb"

Our examples here will use the Unix-style forward slashes; File::ALT_SEPARATOR can be used to get the platform-specific separator character.

The global constant ARGF (also accessible as $<) provides an IO-like stream which allows access to all files mentioned on the command line (or STDIN if no files are mentioned). ARGF#path and its alias ARGF#filename are provided to access the name of the file currently being read.

io/console

The io/console extension provides methods for interacting with the console. The console can be accessed from IO.console or the standard input/output/error IO objects.

Requiring io/console adds the following methods:

Example:

require 'io/console'
rows, columns = $stdout.winsize
puts "Your screen is #{columns} wide and #{rows} tall"

An OpenStruct is a data structure, similar to a Hash, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.

Examples

require "ostruct"

person = OpenStruct.new
person.name = "John Smith"
person.age  = 70

person.name      # => "John Smith"
person.age       # => 70
person.address   # => nil

An OpenStruct employs a Hash internally to store the attributes and values and can even be initialized with one:

australia = OpenStruct.new(:country => "Australia", :capital => "Canberra")
  # => #<OpenStruct country="Australia", capital="Canberra">

Hash keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*) will not be immediately available on the OpenStruct object as a method for retrieval or assignment, but can still be reached through the Object#send method.

measurements = OpenStruct.new("length (in inches)" => 24)
measurements.send("length (in inches)")   # => 24

message = OpenStruct.new(:queued? => true)
message.queued?                           # => true
message.send("queued?=", false)
message.queued?                           # => false

Removing the presence of an attribute requires the execution of the delete_field method as setting the property value to nil will not remove the attribute.

first_pet  = OpenStruct.new(:name => "Rowdy", :owner => "John Smith")
second_pet = OpenStruct.new(:name => "Rowdy")

first_pet.owner = nil
first_pet                 # => #<OpenStruct name="Rowdy", owner=nil>
first_pet == second_pet   # => false

first_pet.delete_field(:owner)
first_pet                 # => #<OpenStruct name="Rowdy">
first_pet == second_pet   # => true

Implementation

An OpenStruct utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.

This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash or a Struct.

UNIXServer represents a UNIX domain stream server socket.

UNIXSocket represents a UNIX domain stream client socket.

Pseudo I/O on String object.

Commonly used to simulate ‘$stdio` or `$stderr`

Examples

require 'stringio'

io = StringIO.new
io.puts "Hello World"
io.string #=> "Hello World\n"

BasicObject is the parent class of all classes in Ruby. It’s an explicit blank class.

BasicObject can be used for creating object hierarchies independent of Ruby’s object hierarchy, proxy objects like the Delegator class, or other uses where namespace pollution from Ruby’s methods and classes must be avoided.

To avoid polluting BasicObject for other users an appropriately named subclass of BasicObject should be created instead of directly modifying BasicObject:

class MyObjectSystem < BasicObject
end

BasicObject does not include Kernel (for methods like puts) and BasicObject is outside of the namespace of the standard library so common classes will not be found without using a full class path.

A variety of strategies can be used to provide useful portions of the standard library to subclasses of BasicObject. A subclass could include Kernel to obtain puts, exit, etc. A custom Kernel-like module could be created and included or delegation can be used via method_missing:

class MyObjectSystem < BasicObject
  DELEGATE = [:puts, :p]

  def method_missing(name, *args, &block)
    super unless DELEGATE.include? name
    ::Kernel.send(name, *args, &block)
  end

  def respond_to_missing?(name, include_private = false)
    DELEGATE.include?(name) or super
  end
end

Access to classes and modules from the Ruby standard library can be obtained in a BasicObject subclass by referencing the desired constant from the root like ::File or ::Enumerator. Like method_missing, const_missing can be used to delegate constant lookup to Object:

class MyObjectSystem < BasicObject
  def self.const_missing(name)
    ::Object.const_get(name)
  end
end

Raised when an IO operation fails.

File.open("/etc/hosts") {|f| f << "example"}
  #=> IOError: not opened for writing

File.open("/etc/hosts") {|f| f.close; f.read }
  #=> IOError: closed stream

Note that some IO failures raise SystemCallErrors and these are not subclasses of IOError:

File.open("does/not/exist")
  #=> Errno::ENOENT: No such file or directory - does/not/exist

The GetoptLong class allows you to parse command line options similarly to the GNU getopt_long() C library call. Note, however, that GetoptLong is a pure Ruby implementation.

GetoptLong allows for POSIX-style options like --file as well as single letter options like -f

The empty option -- (two minus symbols) is used to end option processing. This can be particularly important if options have optional arguments.

Here is a simple example of usage:

require 'getoptlong'

opts = GetoptLong.new(
  [ '--help', '-h', GetoptLong::NO_ARGUMENT ],
  [ '--repeat', '-n', GetoptLong::REQUIRED_ARGUMENT ],
  [ '--name', GetoptLong::OPTIONAL_ARGUMENT ]
)

dir = nil
name = nil
repetitions = 1
opts.each do |opt, arg|
  case opt
    when '--help'
      puts <<-EOF
hello [OPTION] ... DIR

-h, --help:
   show help

--repeat x, -n x:
   repeat x times

--name [name]:
   greet user by name, if name not supplied default is John

DIR: The directory in which to issue the greeting.
      EOF
    when '--repeat'
      repetitions = arg.to_i
    when '--name'
      if arg == ''
        name = 'John'
      else
        name = arg
      end
  end
end

if ARGV.length != 1
  puts "Missing dir argument (try --help)"
  exit 0
end

dir = ARGV.shift

Dir.chdir(dir)
for i in (1..repetitions)
  print "Hello"
  if name
    print ", #{name}"
  end
  puts
end

Example command line:

hello -n 6 --name -- /tmp

The Vector class represents a mathematical vector, which is useful in its own right, and also constitutes a row or column of a Matrix.

Method Catalogue

To create a Vector:

To access elements:

To enumerate the elements:

Properties of vectors:

Vector arithmetic:

Vector functions:

Conversion to other data types:

String representations:

RDoc::Task creates the following rake tasks to generate and clean up RDoc output:

rdoc

Main task for this RDoc task.

clobber_rdoc

Delete all the rdoc files. This target is automatically added to the main clobber target.

rerdoc

Rebuild the rdoc files from scratch, even if they are not out of date.

Simple Example:

require 'rdoc/task'

RDoc::Task.new do |rdoc|
  rdoc.main = "README.rdoc"
  rdoc.rdoc_files.include("README.rdoc", "lib/**/*.rb")
end

The rdoc object passed to the block is an RDoc::Task object. See the attributes list for the RDoc::Task class for available customization options.

Specifying different task names

You may wish to give the task a different name, such as if you are generating two sets of documentation. For instance, if you want to have a development set of documentation including private methods:

require 'rdoc/task'

RDoc::Task.new :rdoc_dev do |rdoc|
  rdoc.main = "README.doc"
  rdoc.rdoc_files.include("README.rdoc", "lib/**/*.rb")
  rdoc.options << "--all"
end

The tasks would then be named :rdoc_dev, :clobber_rdoc_dev, and :rerdoc_dev.

If you wish to have completely different task names, then pass a Hash as first argument. With the :rdoc, :clobber_rdoc and :rerdoc options, you can customize the task names to your liking.

For example:

require 'rdoc/task'

RDoc::Task.new(:rdoc => "rdoc", :clobber_rdoc => "rdoc:clean",
               :rerdoc => "rdoc:force")

This will create the tasks :rdoc, :rdoc:clean and :rdoc:force.

A StringIO duck-typed class that uses Tempfile instead of String as the backing store.

This is available when rubygems/test_utilities is required.

newton.rb

Solves the nonlinear algebraic equation system f = 0 by Newton’s method. This program is not dependent on BigDecimal.

To call:

  n = nlsolve(f,x)
where n is the number of iterations required,
      x is the initial value vector
      f is an Object which is used to compute the values of the equations to be solved.

It must provide the following methods:

f.values(x)

returns the values of all functions at x

f.zero

returns 0.0

f.one

returns 1.0

f.two

returns 2.0

f.ten

returns 10.0

f.eps

returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.

On exit, x is the solution vector.

JavaScript Object Notation (JSON)

JSON is a lightweight data-interchange format. It is easy for us humans to read and write. Plus, equally simple for machines to generate or parse. JSON is completely language agnostic, making it the ideal interchange format.

Built on two universally available structures:

1. A collection of name/value pairs. Often referred to as an _object_, hash table, record, struct, keyed list, or associative array.
2. An ordered list of values. More commonly called an _array_, vector, sequence or list.

To read more about JSON visit: json.org

Parsing JSON

To parse a JSON string received by another application or generated within your existing application:

require 'json'

my_hash = JSON.parse('{"hello": "goodbye"}')
puts my_hash["hello"] => "goodbye"

Notice the extra quotes '' around the hash notation. Ruby expects the argument to be a string and can’t convert objects like a hash or array.

Ruby converts your string into a hash

Generating JSON

Creating a JSON string for communication or serialization is just as simple.

require 'json'

my_hash = {:hello => "goodbye"}
puts JSON.generate(my_hash) => "{\"hello\":\"goodbye\"}"

Or an alternative way:

require 'json'
puts {:hello => "goodbye"}.to_json => "{\"hello\":\"goodbye\"}"

JSON.generate only allows objects or arrays to be converted to JSON syntax. to_json, however, accepts many Ruby classes even though it acts only as a method for serialization:

require 'json'

1.to_json => "1"

Kanji Converter for Ruby.

The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.

You need to require 'objspace' to use this extension module.

Generally, you *SHOULD NOT* use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.

The ObjectSpace module contains a number of routines that interact with the garbage collection facility and allow you to traverse all living objects with an iterator.

ObjectSpace also provides support for object finalizers, procs that will be called when a specific object is about to be destroyed by garbage collection.

require 'objspace'

a = "A"
b = "B"

ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })

produces:

Finalizer two on 537763470
Finalizer one on 537763480

The Benchmark module provides methods to measure and report the time used to execute Ruby code.

The result:

              user     system      total        real
for:      1.010000   0.000000   1.010000 (  1.015688)
times:    1.000000   0.000000   1.000000 (  1.003611)
upto:     1.030000   0.000000   1.030000 (  1.028098)

Timeout long-running blocks

Synopsis

require 'timeout'
status = Timeout::timeout(5) {
  # Something that should be interrupted if it takes more than 5 seconds...
}

Description

Timeout provides a way to auto-terminate a potentially long-running operation if it hasn’t finished in a fixed amount of time.

Previous versions didn’t use a module for namespacing, however timeout is provided for backwards compatibility. You should prefer Timeout#timeout instead.

Copyright

© 2000 Network Applied Communication Laboratory, Inc.

Copyright

© 2000 Information-technology Promotion Agency, Japan

Specifies a Specification object that should be activated. Also contains a dependency that was used to introduce this activation.

No documentation available

The PersonConstruct module is used to define a Person Atom element that can be used to describe a person, corporation, or similar entity

The PersonConstruct has a Name, Uri, and Email child elements

No documentation available
No documentation available

Servlet for serving a single file. You probably want to use the FileHandler servlet instead as it handles directories and fancy indexes.

Example:

server.mount('/my_page.txt', WEBrick::HTTPServlet::DefaultFileHandler,
             '/path/to/my_page.txt')

This servlet handles If-Modified-Since and Range requests.

WIN32OLE_EVENT objects controls OLE event.

WIN32OLE_PARAM objects represent param information of the OLE method.

Search took: 17ms  ·  Total Results: 3558